www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis-Sonstiges" - vektorprodukt
vektorprodukt < Sonstiges < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

vektorprodukt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:50 So 20.01.2008
Autor: anfaenger_

Aufgabe
bestimmen sie den abstand des punktes P(2;3;5) von der ebene [mm] e:\overrightarrow{x}=\pmat{ 1 \\ -2 \\ 2} [/mm] + u [mm] \pmat{ 1 \\ 1 \\ 2} [/mm] + v [mm] \pmat{ -1 \\ 2 \\ 2}! [/mm] (Hinweis:Benutzen sie dazu das volumen eines Parallelepids!)

also...ich denke... das des damit irgendwie geht
die formel heißt ja
[mm] v=(\overrightarrow{a} [/mm] x [mm] \overrightarrow{b})=\overrightarrow{c} [/mm]

sosel..
dann setz ich doch die zahlen [mm] ein:\pmat{ 1 \\ 1 \\ 2} [/mm]
[mm] \pmat{ -1 \\ 2 \\ 2} [/mm]
und
[mm] \pmat{ 2 \\ 3 \\ 5} [/mm]


oder?

aber wie mach ich dann weiter:(

den abstand kann man zwar ja auch anders bestimmen aber irgendwie ... ach .. =(

        
Bezug
vektorprodukt: Tipp
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:30 So 20.01.2008
Autor: Zwerglein

Hi, anfaenger,

> bestimmen sie den abstand des punktes P(2;3;5) von der
> ebene [mm]e:\overrightarrow{x}=\pmat{ 1 \\ -2 \\ 2}[/mm] + u
> [mm]\pmat{ 1 \\ 1 \\ 2}[/mm] + v [mm]\pmat{ -1 \\ 2 \\ 2}![/mm]
> (Hinweis:Benutzen sie dazu das volumen eines
> Parallelepids!)
>  also...ich denke... das des damit irgendwie geht
>  die formel heißt ja
>  [mm]v=(\overrightarrow{a}[/mm] x
> [mm]\overrightarrow{b})=\overrightarrow{c}[/mm]
>  
> sosel..
>  dann setz ich doch die zahlen [mm]ein:\pmat{ 1 \\ 1 \\ 2}[/mm]
>  
> [mm]\pmat{ -1 \\ 2 \\ 2}[/mm]
>  und
>  [mm]\pmat{ 2 \\ 3 \\ 5}[/mm]

Der letzte Vektor ist natürlich falsch!
Du musst als 3. Vektor den VERBINDUNGSVEKTOR zwischen dem Punkt P und dem Aufpunkt der Ebene einsetzen!
(Übrigens kannst Du anstelle der Formel mit Kreuz- und Skalarprodukt auch die Determinante der 3 Vektoren berechnen: Da kommt asselbe raus!)
Gut: Und wenn Du das nun ausgerechnet hast und es kommt "was Negatives" raus, dann nimmst Du natürlich den Betrag, denn: ein Volumen kann ja nicht negativ sein!

> aber wie mach ich dann weiter:(

Nun: Jetzt erinnere Dich an die Mittelstufe!
Dort berechnet man dasselbe Volumen mit Hilfe der Formel:
V = Grundfläche * Höhe.
Die Höhe wiederum ist dasselbe wie der Abstand des Punktes P von der Ebene E.

Na? Weißt Du nun, wie's weitergeht?!

mfG!
Zwerglein

Bezug
        
Bezug
vektorprodukt: Antwort
Status: (Antwort) fertig Status 
Datum: 13:37 So 20.01.2008
Autor: Halloomid1493

Hi,
Wenn du den Abstand durch Volumenparallelogram bestimmen wills,musst du erst das Volumen,das durch drei Vektoren(zwei Richtungsvektor in der Ebene und einen Vektor durch [mm] a_{0} [/mm] und p) gespannt wird,bestimmen und das wieder durch die Flächenparallelogram in der Ebene dividieren,
Grüß
Omid

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de