www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - vereinigung von untergruppen
vereinigung von untergruppen < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

vereinigung von untergruppen: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 11:09 Di 21.10.2008
Autor: nimet

Aufgabe
Es sei G eine Gruppe. Zeigen Sie: Die Vereinigung U [mm] \cup [/mm] V zweier Untergruppen U und V von G ist genau dann eine Untergruppe, wenn U [mm] \subseteq [/mm] V oder V [mm] \subseteq [/mm] U

Hallo,

also ich weiß zwar das die Vereigung von Untergruppen keine Untergruppe ist wenn U=V ist und habe es auch per einem Gegenbeispiel gezeigt, indem ich [mm] U=2\IZ [/mm] und [mm] V=3\IZ [/mm] vereinigt habe, aber ich weiß nicht, wie ich es für die Teilmengen beweisen soll.

Wäre sehr nett wenn mir jemand doch bitte helfen könnte.

LG
nimet

        
Bezug
vereinigung von untergruppen: Hinweise
Status: (Antwort) fertig Status 
Datum: 11:52 Di 21.10.2008
Autor: statler

Hi!

> Es sei G eine Gruppe. Zeigen Sie: Die Vereinigung U [mm]\cup[/mm] V
> zweier Untergruppen U und V von G ist genau dann eine
> Untergruppe, wenn U [mm]\subseteq[/mm] V oder V [mm]\subseteq[/mm] U

> also ich weiß zwar das die Vereigung von Untergruppen keine
> Untergruppe ist wenn U=V ist und habe es auch per einem
> Gegenbeispiel gezeigt, indem ich [mm]U=2\IZ[/mm] und [mm]V=3\IZ[/mm]
> vereinigt habe, aber ich weiß nicht, wie ich es für die
> Teilmengen beweisen soll.

Wenn U=V ist, ist es eine Untergruppe, da meinst du etwas anderes.

Aber wenn U [mm] \cup [/mm] V eine Untergruppe ist und z. B. U [mm] \not\subseteq [/mm] V, dann gibt es ein u [mm] \in [/mm] U mit u [mm] \notin [/mm] V. Wo liegt für ein beliebiges v [mm] \in [/mm] V das Produkt uv und folglich auch v selbst?

Gruß aus HH-Harburg
Dieter

Bezug
                
Bezug
vereinigung von untergruppen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:56 Di 21.10.2008
Autor: nimet

v selbst liegt dann in V, aber das produkt liegt weder in U noch in V, oder bin ich da falsch???

Bezug
                        
Bezug
vereinigung von untergruppen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:16 Di 21.10.2008
Autor: statler


> v selbst liegt dann in V, aber das produkt liegt weder in U
> noch in V, oder bin ich da falsch???

Da bist du falsch (schöne deutsche Formulierung), denn U [mm] \cup [/mm] V soll doch eine Untergruppe sein.

Gruß
Dieter


Bezug
                                
Bezug
vereinigung von untergruppen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:23 Di 21.10.2008
Autor: nimet

:)
ja stimmt das produkt liegt entweder in U oder V.
Also mit U=V meinte ich G:=( [mm] \IZ, [/mm] +) ist keine Untergruppe für die Vereinigung ;)

Bezug
                                        
Bezug
vereinigung von untergruppen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:19 Di 21.10.2008
Autor: statler

Hi!

> :)
>  ja stimmt das produkt liegt entweder in U oder V.

Ob 'entweder...oder', weißt du noch gar nicht. Aber 'oder' alleine ist richtig. Und jetzt kannst du dir überlegen, in welcher von den beiden Untergruppen es jedenfalls nicht liegt. Lösung: Es liegt nicht in V. Meine Frage: Warum?

>  Also mit U=V meinte ich G:=( [mm]\IZ,[/mm] +) ist keine Untergruppe
> für die Vereinigung ;)

Mit U=V kann man nur meinen, daß U gleich V ist. Die Bedeutung des =-Zeichens ist festgelegt. Ich bin mir nicht mehr sicher, ob du weißt, was du mit deinem Gegenbeispiel zeigen sollst und willst. Deine Formulierungen erzeugen da Zweifel.

Gruß
Dieter


Bezug
                                                
Bezug
vereinigung von untergruppen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:05 Mo 31.10.2011
Autor: thanyx

der thread is zwar bissel alt,aber genaus meine aufgabenstellung. ich hoffe man sieht die antwort ;)

aufgrund der algebraischen abgeschlossenheit muss uv in U liegen, wodurch [mm] V\subset [/mm] U, was ja eine der beiden vorraussetzungen ist.
aber warum liegt uv nicht in V?
liegt es evtl daran das [mm] u\not\in [/mm] V?

Bezug
                                                        
Bezug
vereinigung von untergruppen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:39 Mo 31.10.2011
Autor: leduart

Hallo
Ja! aber du musst es zeigen !
angenommen uv in V folgt [mm] uv*v^{-1}=u [/mm] in V
Gruss leduart


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de