www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algorithmen und Datenstrukturen" - verfahren, zeitkomplexität
verfahren, zeitkomplexität < Algor.+Datenstr. < Theoretische Inform. < Hochschule < Informatik < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algorithmen und Datenstrukturen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

verfahren, zeitkomplexität: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:44 Di 10.11.2009
Autor: den9ts

Aufgabe
Betrachten Sie ein zwei-dimensionales Feld L[i][j] mit Indizies i, j [mm] \in [/mm] {1, . . . ,m}, das bei Konstanthalten eines Index bezüglich des anderen Index geordnet ist. Für alle i, j, k, l [mm] \in [/mm] {1, . . . ,m} gelte also
1. L[i][j] [mm] \le [/mm] L[k][j], wenn i < k, und
2. L[i][j] [mm] \le [/mm] L[i][l], wenn j < l.

Gegeben sei ein Verfahren, das ein solches Feld L und einen Schlüssel s als Eingabe erhält und feststellt, ob s in L enthalten ist. Leiten Sie eine untere Schranke der Zeitkomplexität für ein solches Verfahren her. Gibt es ein Verfahren mit Zeitaufwand in O(logm)?

hej, hab leider garkein plan von der aufgabe und hoffe mir kann jmd helfen mich in die richtige richtung zu führn

also ich soll eine untere schranke herleiten (d.h. herleiten wieviel schritte der algorithmus mindestens ausführen muss, bis der schlüssel gefunden wird ( bzw um das Problem zu lösen))
speziell bei der 2 dimensionalen liste muss sich der algorithmus sich im durchschnitt ca. die hälfte aller felder anschauen um den schlüssel zu finden?
bei m feldern je liste ergibt das m*m verschiedene felder, d.h. im durchschnitt muss sich der algorithmus [mm] \bruch{(m*m)}{2} [/mm] felder anschauen?

das würde [mm] O(m^2) [/mm] entsprechen?

so wärn jetz meine gedanken zu der aufgabe gewesen, aber glaub das is nich so knorke...

danke

        
Bezug
verfahren, zeitkomplexität: Antwort
Status: (Antwort) fertig Status 
Datum: 02:59 Mi 11.11.2009
Autor: felixf

Hallo!

> Betrachten Sie ein zwei-dimensionales Feld L[j] mit
> Indizies i, j [mm]\in[/mm] {1, . . . ,m}, das bei Konstanthalten
> eines Index bezüglich des anderen Index geordnet ist. Für
> alle i, j, k, l [mm]\in[/mm] {1, . . . ,m} gelte also
> 1. L[j] [mm]\le[/mm] L[k][j], wenn i < k, und
> 2. L[j] [mm]\le[/mm] L[l], wenn j < l.
>
> Gegeben sei ein Verfahren, das ein solches Feld L und einen
> Schlüssel s als Eingabe erhält und feststellt, ob s in L
> enthalten ist. Leiten Sie eine untere Schranke der
> Zeitkomplexität für ein solches Verfahren her. Gibt es
> ein Verfahren mit Zeitaufwand in O(logm)?
> hej, hab leider garkein plan von der aufgabe und hoffe mir
> kann jmd helfen mich in die richtige richtung zu führn
>
> also ich soll eine untere schranke herleiten (d.h.
> herleiten wieviel schritte der algorithmus mindestens
> ausführen muss, bis der schlüssel gefunden wird ( bzw um
> das Problem zu lösen))

Genau.

> speziell bei der 2 dimensionalen liste muss sich der
> algorithmus sich im durchschnitt ca. die hälfte aller
> felder anschauen um den schlüssel zu finden?

Nein, sicher nicht. Mir faellt spontan ein Algorithmus ein, der das Problem in [mm] $\mathcal{O}(m \log [/mm] m)$ Schritten loest, also weniger also [mm] $\Omega{O}(m^2)$ [/mm] Schritte braucht die du als untere Schranke haben willst.

Du kannst weiterhin recht einfach zeigen, dass es keinen Algorithmus geben kann, der dieses Problem in weniger als [mm] $\Omega(m)$ [/mm] Schritten loesen kann. Zeige dazu, dass du eine beliebige Folge [mm] $(a_1, \dots, a_m)$ [/mm] aus [mm] $\{ 1, \dots, m + 1 \}$ [/mm] in so ein Schema einbetten kannst, und ein Algorithmus der testet ob ein Element in dem Schema liegt entscheidet, ob eins der [mm] $a_i$ [/mm] gleich 1 ist. (Da die [mm] $a_i$ [/mm] beliebig sein koennen kann man sich leicht ueberlegen, dass jeder solche Algorithmus im worst case $m$ Schritte braucht.)

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algorithmen und Datenstrukturen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de