www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mengenlehre" - vertauschbare kompositionen
vertauschbare kompositionen < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

vertauschbare kompositionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:14 Sa 27.10.2007
Autor: streicher1

Aufgabe
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

wenn man zei reelle funtionen f(x)=px+q und g(x)=mx+n hat, sollen notwendige und hinreichende bedingungen gefunden werden, dass die komposition der abbildung vertauschbar sind. Also f°g=g°f.

was ist zu tun, ich habe null ahnung was hier zu tun ist.

        
Bezug
vertauschbare kompositionen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:22 Sa 27.10.2007
Autor: Blech


> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> wenn man zei reelle funtionen f(x)=px+q und g(x)=mx+n hat,
> sollen notwendige und hinreichende bedingungen gefunden
> werden, dass die komposition der abbildung vertauschbar
> sind. Also f°g=g°f.
>  was ist zu tun, ich habe null ahnung was hier zu tun ist.

Wie sehen denn die beiden Kompositionen explizit aus?


Bezug
                
Bezug
vertauschbare kompositionen: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 22:33 Sa 27.10.2007
Autor: streicher1

wie soll ich das verstehen. willst du von mir wissen wie eine komposition f°g aussieht?

Bezug
                        
Bezug
vertauschbare kompositionen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:36 Sa 27.10.2007
Autor: Gnometech

Nein, Du sollst einfach mal einsetzen, was herauskommt... $f$ und $g$ sind ja ein wenig konkreter gegeben.

Also, was kommt heraus, wenn man [mm] $f\big(g(x)\big)$ [/mm] und [mm] $g\big(f(x)\big)$ [/mm] mit den Vorschriften, die Du angegeben hast bildet? Und was muss dann für die Koeffizienten gelten, damit da das Gleiche herauskommt?

Liebe Grüße
Lars

Bezug
                                
Bezug
vertauschbare kompositionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:04 Sa 27.10.2007
Autor: streicher1

du meinst sowas wie:
(px+q)°(mx+n)=(mx+n)°(px+q)??

Bezug
                                        
Bezug
vertauschbare kompositionen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:07 Sa 27.10.2007
Autor: Blech

Nein, er meint f(g(x)). Einfach einsetzen.

Bezug
                                                
Bezug
vertauschbare kompositionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:13 Sa 27.10.2007
Autor: streicher1

also f(g(x)) = f(mx+n)  und g(f(x)) = g(px+q)??

Bezug
                                                        
Bezug
vertauschbare kompositionen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:22 Sa 27.10.2007
Autor: Blech


> also f(g(x)) = f(mx+n)  und g(f(x)) = g(px+q)??

und was ist f(mx+n)?

Bezug
                                                                
Bezug
vertauschbare kompositionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:28 Sa 27.10.2007
Autor: streicher1

ich habe keine ahnung.

Bezug
                                                                        
Bezug
vertauschbare kompositionen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:33 Sa 27.10.2007
Autor: Blech

was ist denn f(5)?

Bezug
                                                                                
Bezug
vertauschbare kompositionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:07 So 28.10.2007
Autor: streicher1

ich weis es nicht, steht ja nichts mehr hinter einem gleichheitszeichen wie bei
f(x)=mx+n, da kann man ja f(5) bilden, aber ich weis nicht worauf du hinauswillst

Bezug
                                                                                        
Bezug
vertauschbare kompositionen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:29 So 28.10.2007
Autor: Gnometech

Du meinst das wirklich ernst, oder?

Also, wir meinten folgendes. Gegeben ist ja $f(x) = px + q$ und $g(x) = mx + n$. Ineinander eingesetzt ergibt das:

[mm] $f\big(g(x)\big) [/mm] = f(mx+n) = p [mm] \cdot [/mm] (mx+n) + q$

bzw.

[mm] $g\big(f(x)\big) [/mm] = g(px + q) = m [mm] \cdot [/mm] (px + q) + n$

Diese beiden Ausdrücke sind zu vergleichen und es sind (notwendige und hinreichende) Bedingungen an die Koeffizienten m, n, p und q zu finden, die dafür sorgen, dass sie gleich sind.

Ist nun klar, wie die Aufgabe gemeint ist?

Gruß,
Lars

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de