www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Maßtheorie" - vervollständigter Massraum
vervollständigter Massraum < Maßtheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

vervollständigter Massraum: Beweis zu genau-dann-wenn
Status: (Frage) beantwortet Status 
Datum: 22:05 So 30.09.2012
Autor: pablovschby

Aufgabe
(X,A,d) sei ein Massraum. Seien

[mm] Z_d [/mm] := {Z [mm] \subset [/mm] X: Z [mm] \subset [/mm] N mit N d-Nullmenge, N [mm] \subset [/mm] A}
[mm] A_d [/mm] := { (B [mm] \cup Z_1)\setminus Z_2 [/mm] : B [mm] \subset [/mm] A, [mm] Z_1, Z_2 \subset Z_d [/mm] }

Man zeige nun, dass

Für jede Teilmenge D [mm] \subset [/mm] X gilt

D [mm] \subset A_d \gdw [/mm] D = B [mm] \cup [/mm] Z für ein Z [mm] \subset Z_d [/mm] und ein B [mm] \subset [/mm] A

[mm] \Rightarrow [/mm]
$D=(B [mm] \cup Z_1)\setminus Z_2 [/mm] = B [mm] \setminus Z_2 \cup Z_1 \setminus Z_2 [/mm]  $
Nun [mm] \exists N_1 \subset [/mm] A mit [mm] Z_1 \subset N_1 [/mm] und [mm] d(N_1) [/mm] =0 . Also ist auch weil [mm] Z_1 \setminus Z_2 \subset N_1 [/mm]  also [mm] Z_1 \setminus Z_2 [/mm] eine d-Nullmenge [mm] \subset Z_d [/mm] .

Wie aber kann ich zeigen, dass B [mm] \setminus Z_2 \subset [/mm] A ist bzw. warum ist das so?


[mm] \Leftarrow [/mm]

D=B [mm] \cup [/mm] Z = (B [mm] \cup [/mm] Z ) [mm] \setminus \emptyset [/mm]

B [mm] \subset [/mm] A, Z, [mm] \emptyset \subset Z_d [/mm]

(Das reicht?)


Grüsse

        
Bezug
vervollständigter Massraum: Antwort
Status: (Antwort) fertig Status 
Datum: 23:26 So 30.09.2012
Autor: Gonozal_IX

Hiho,

ein Hinweis vorweg: Deine Ausdrücke der Form $N [mm] \subset [/mm] A$ sind fundamental falsch! Du musst genauer unterscheiden zwischen Teilmenge [mm] "$\subset$" [/mm] und Element [mm] "$\in$"! [/mm] Ansonsten machen die Ausdrücke keinen Sinn. Das fängt schon zu Beginn an:

> [mm]Z_d := \{Z \subset X: Z \subset N \text{ mit } N \text{ d-Nullmenge }, N \subset A\}[/mm]

N ist hier keine Teilmenge von A, sondern ein Element.
Mach dir das klar und korrigier das bitte auch in allen anderen Fällen.

Das führt sogar dazu, dass deine Aufgabenstellung einfach nicht zu zeigen wäre, denn sie wäre falsch, es müsste auch dort [mm] $D\in Z_d$ [/mm] heißen!

>  [mm]\Rightarrow[/mm]
>  [mm]D=(B \cup Z_1)\setminus Z_2 = B \setminus Z_2 \cup Z_1 \setminus Z_2 [/mm]
>  
> Nun [mm]\exists N_1 \subset[/mm] A mit [mm]Z_1 \subset N_1[/mm] und [mm]d(N_1)[/mm] =0
> . Also ist auch weil [mm]Z_1 \setminus Z_2 \subset N_1[/mm]  also
> [mm]Z_1 \setminus Z_2[/mm] eine d-Nullmenge [mm]\subset Z_d[/mm] .
>  
> Wie aber kann ich zeigen, dass B [mm]\setminus Z_2 \subset[/mm] A
> ist bzw. warum ist das so?

Das ist im Allgemeinen auch nicht so.
Es gilt ja aber [mm] $Z_2 \subset N_2 \in [/mm] A$.
Nun Versuch mal [mm] $B\setminus Z_2$ [/mm] mit Hilfe von [mm] $B\setminus N_2, Z_2$ [/mm] und [mm] $N_2$ [/mm] darzustellen.
Dann bist du fertig.
Bei [mm] $B\setminus N_2$ [/mm] nimmst du ja anschaulich "mehr" weg als bei [mm] $B\setminus Z_2$, [/mm] dann musst du also was noch machen?

> [mm]\Leftarrow[/mm]
>  
> D=B [mm]\cup[/mm] Z = (B [mm]\cup[/mm] Z ) [mm]\setminus \emptyset[/mm]
>  
> B [mm]\subset[/mm] A, Z, [mm]\emptyset \subset Z_d[/mm]
>
> (Das reicht?)

Ja, wenn du die Notation anpasst, ist das wirklich so trivial ;-)


MFG,
Gono.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de