www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Schul-Analysis" - verzwickte Flächenberechnung
verzwickte Flächenberechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

verzwickte Flächenberechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:06 Di 27.04.2004
Autor: DerMathematiker

Hi,

ich habe hier ein Integral, das bitte mal jemand für mich lösen soll. Anscheinend gibt es für dieses nur einen Lösungsweg, was ich sehr schade finde. Aber rechnet es erst mal durch, die Lösung gebe ich euch dann später.

2*Pi* [mm] \integral_a^b{ \bruch{4x}{x+1}dx} [/mm]

a=0
b=10

(Anmerkung: der Formeleditor nahm meine obere Intervallgrenze 10 nicht an! deshalb mit a und b)

Viel Spaß,

euer Andi

        
Bezug
verzwickte Flächenberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:42 Di 27.04.2004
Autor: Paulus

Hallo DerMathematiker

soll das jetzt eine Testaufgabe für uns sein, weil du die Lösung schon kennst, oder willst du einfach mal wissen, was denn wir für einen Lösungsweg einschlagen?

Also, ich versuch mich mal an der Aufgabe:

zunächst werde ich die 4 vor das Integral ziehen und dann den Bruch ein wenig umformen, damit das Zählerpolynom einen kleineren Grad erhält als das Nennerpolynom. Dies erreiche ich durch "Ausdividieren des Bruches".

[mm]2 \pi \integral_{0}^{10}{ \bruch{4x}{x+1}dx}= 8 \pi \integral_{0}^{10}{ \bruch{x}{x+1}dx}= 8 \pi \integral_{0}^{10}({ 1 - \bruch{1}{x+1})dx}[/mm]

und dies ist jetzt nicht mehr schwierig.
Man muss natürlich achtgeben, dass die Integrationsgrenzen nicht einen "nichtdefinierten Bereich" überstreichen. (Die Funktion wäre bei [mm]x=-1[/mm] ja nicht definiert. Dort hätte man dann noch weitere Analysen durchführen müssen (eigentlich, uneigentlich))

Ich erhalte für das unbestimmte Integral den folgenden Ausdruck (Stammfunktion):

[mm]8 \pi (x-ln{(x+1)) + Const.[/mm]

Dabei durfte ich die Absolutstriche im Logarithmus weglassen, weil (x+1) innerhalb der Integrationsgrenzen überall grösser 0 ist.

Für das bestimmte Integral erhalte ich das Resultat:

[mm]8 \pi (10 - ln(11))[/mm] :-)

gibst du uns deine Lösung nun auch noch bekannt?

Und noch eine Anmerkung: statt des Ausdividierens des Polynoms hätte man auch die Substitution [mm]x:=u-1[/mm] vornehmen können. Dann wäre die Rechnung auch einfach geworden! Dies nur um zu zeigen, dass es oft nicht nur einen Lösungsweg gibt, wie du oben behauptet hast! ;-)

Möglicherweise hätte man auch etwas mit partieller Integration hingekriegt!
Das habe ich aber nicht ausprobiert.



Bezug
                
Bezug
verzwickte Flächenberechnung: Deine Antwort ist richtig + weitere fragen
Status: (Frage) beantwortet Status 
Datum: 19:03 Di 27.04.2004
Autor: DerMathematiker

Hallo,

danke für das lösen. Wie funktioniert das aber mit dem ausdividieren? Also wie kommt man von x/(x+1) auf 1- 1/(x+1)???

Danke für deine Lösung.

MfG Andi

Bezug
                        
Bezug
verzwickte Flächenberechnung: 1. durch Polynomdivision
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:08 Di 27.04.2004
Autor: DerMathematiker

Hi,

also eine Möglichkeit habe ich gerade herausbekommen durch Polynomdivision.

wenn ihr noch weitere wisst, dann bitte posten.

MfG Andi

Bezug
                        
Bezug
verzwickte Flächenberechnung: wie kommt man von x/(x+1) auf 1- 1/(x+1)???
Status: (Antwort) fertig Status 
Datum: 19:20 Di 27.04.2004
Autor: Marcel

Hallo Mathematiker,
> wie kommt man von x/(x+1) auf 1- 1/(x+1)???

Zum Beispiel durch folgenden einfachen Trick (im Zähler erst +1 und dann direkt wieder -1 rechnen, also +0, weil +1-1=0 ;-)):
[mm] \bruch{x}{x+1} =\bruch{x+1-1}{x+1} =\bruch{(x+1)-1}{x+1} = \bruch{x+1}{x+1}-\bruch{1}{x+1} =1-\bruch{1}{x+1} [/mm] .
Natürlich für [mm] x \ne -1 [/mm], damit wir nicht durch 0 teilen ;-)

Viele Grüße
Marcel

Bezug
                                
Bezug
verzwickte Flächenberechnung: wie kommt man von x/(x+1) auf 1- 1/(x+1)???
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:04 Mo 03.05.2004
Autor: Emily

durch Polynomdivision:

       x:(x+1)  = 1 -1/(x+1)

  - (x+1)
------------
       -1



Bezug
        
Bezug
verzwickte Flächenberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:25 Mo 03.05.2004
Autor: Emily

Andere Lösung:


Substitution:   t = x + 1               f(t) = (t - 1)/t = 1 -1/t

                x = t - 1               F(t) =  t -ln|t| +c

                dx = dt

Grenzen verändern mit t(a) = a+1 usw.
            

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de