www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - voll inhomogene RWA
voll inhomogene RWA < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

voll inhomogene RWA: Lösung
Status: (Frage) beantwortet Status 
Datum: 13:18 Di 16.03.2010
Autor: Katrin89

Aufgabe
[mm] u(x)''+4u(x)=8cos^2(x) [/mm]
u(0)=0
[mm] u(\pi/4)=\pi/4 [/mm]
Tipp: [mm] cos^2(x)=1/2*cos(2x)+1/2 [/mm]

1) Löse die zugeh. homogene Gleichung:
Lösung:
[mm] u_1=sin(2x) [/mm]
[mm] u_2=cos(2x) [/mm]

2) zur Lösung des inhomogenen Problems:
Greensche Fkt. geht ja nicht, weil [mm] R_2 [/mm] ungleich 0 ist.
Jetzt habe ich keinen blaßen Schimmer wie ich eine Grundlösung finden kann.


        
Bezug
voll inhomogene RWA: Antwort
Status: (Antwort) fertig Status 
Datum: 22:04 Di 16.03.2010
Autor: Herby

Hallo Katrin,

so rein vom Gefühl her würde ich es hier - in Verbindung mit dem Tipp - mit dem Ansatz:

[mm] y_p=(Ax+B)*\cos(2x)+(Cx+D)*\sin(2x)+Ex+F [/mm]

versuchen - keine Ahnung, ob es klappt - aber besser als nichts :-)


LG
Herby

Bezug
                
Bezug
voll inhomogene RWA: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:50 Do 18.03.2010
Autor: Katrin89

Hey, danke für deine Antwort. Ich werde mich gleich mal daran setzen.
Ich habe noch eine allgemeine Frage:
Ist y(x)=Integral von der Grundlösung multipliziert mit der inhomogenen Lösung, ist dies die allgemeine Lösung oder die partikuläre, die ich noch zur homogenen Lösung addieren muss?

Bezug
                        
Bezug
voll inhomogene RWA: Antwort
Status: (Antwort) fertig Status 
Datum: 16:41 Do 18.03.2010
Autor: leduart

Hallo katrin
Ganz versteh ich die Frage nicht. wenn du ne part. Lösung hast, dann addier sie einfach zur allgemeinen Lösg. der homogenen, das ist die allg. Lösung der inh.
Irgendwie kriegst du vielleicht die Möglichket der Variation der Konstanten um die part. Lösung zu finden mit der Lösung durcheinander?
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de