www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Induktion" - vollst. Induktion
vollst. Induktion < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

vollst. Induktion: Aufgabe 1
Status: (Frage) beantwortet Status 
Datum: 12:53 Sa 27.10.2007
Autor: Sunsh1ne

Aufgabe
Zeigen Sie mittels vollständiger Induktion, dass die folgende Aussage für alle natürlichen Zahlen n aus [mm] \IN [/mm] gilt.

1+4+7+10+...+(3n+1) = [mm] \bruch{(n+1)(3n+2)}{2} [/mm]

Hallo :)

Ich soll die folgende Aufgabe durch vollst. Induktion lösen.
Der Induktionsanfang ist mir klar, doch leider weiß ich dann nicht genau, wie man vorgehen muss.

Induktionsanfang:

für n=0

[mm] 1=\bruch{(1+1)(3*1+2)}{2} [/mm]
1=1

Bin für jeden Tipp, bzw Hilfe Dankbar! :)
Liebe Grüße, Sunny

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
vollst. Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 13:07 Sa 27.10.2007
Autor: leduart

Hallo
> Zeigen Sie mittels vollständiger Induktion, dass die
> folgende Aussage für alle natürlichen Zahlen n aus [mm]\IN[/mm]
> gilt.
>  
> 1+4+7+10+...+(3n+1) = [mm]\bruch{(n+1)(3n+2)}{2}[/mm]
>  Hallo :)
>  
> Ich soll die folgende Aufgabe durch vollst. Induktion
> lösen.
>  Der Induktionsanfang ist mir klar, doch leider weiß ich
> dann nicht genau, wie man vorgehen muss.
>  
> Induktionsanfang:
>  
> für n=0

Du hast das richtig für n=1 nicht n=0 gemacht!

> [mm]1=\bruch{(1+1)(3*1+2)}{2}[/mm]
>  1=1

Jetzt schreibst du:
Induktionsvorraussetzung:
I) 1+4+7+10+...+(3n+1) = [mm]\bruch{(n+1)(3n+2)}{2}[/mm]
ist richtig für n
Behauptung: DANN gilt es auch für n+1. d.h.
1+4+7+10+...+(3n+1)+(3(n+1)+1) = [mm]\bruch{({n+1}+1)(3(n+1)+2)}{2}[/mm]

diesen Ausdruck musst du jetzt zeigen, inden du I) benutzt.
für 1+4+7+10+...+(3n+1)+(3(n+1)+1) kannst du ja schreiben
|1+4+7+10+...+(3n+1)]+(3(n+1)+1) =[mm]\bruch{(n+1)(3n+2)}{2}+(3n+4)[/mm]
und jetzt umformen um die rechte Seite der Beh. rauszukriegen.
das ist das "normale" Vorgehen, um solche Summenformeln zu beweisen. man setzt für den Amfang der Summe, meine [...] die Induktionsvoers . ein und rechnet dann aus , ob die Beh. stimmt.
Gruss leduart

Bezug
                
Bezug
vollst. Induktion: Danke schön!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:16 So 28.10.2007
Autor: Sunsh1ne

Vielen Dank für die schnelle Hilfe. Habe es jetzt hoffentlich so einigermaßen hinbekommen.

Wünsche dir noch einen schönen Sonntag! :)

Viele Grüße, Sunny

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de