www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Sonstiges" - vollständig metrischer Raum
vollständig metrischer Raum < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

vollständig metrischer Raum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:31 So 10.12.2006
Autor: nicebear

hallo
ich soll zeigen, dass der folgende metrische Raum nicht vollständig ist. aber ich weiß nicht, wie ich die aufgabe angehen soll. kann jemand mir bitte helfen?

X = [mm] \IN, [/mm] d(n,m):= |n-m|/nm

für einen Hinweis wäre ich euch sehr dankbar.
viele Grüße
nicebear










Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
vollständig metrischer Raum: Antwort
Status: (Antwort) fertig Status 
Datum: 19:55 So 10.12.2006
Autor: angela.h.b.


> hallo
> ich soll zeigen, dass der folgende metrische Raum nicht
> vollständig ist. aber ich weiß nicht, wie ich die aufgabe
> angehen soll. kann jemand mir bitte helfen?
>
> X = [mm]\IN,[/mm] d(n,m):= |n-m|/nm


Hallo,

ein metrischer Raum ist vollständig, wenn jede Cauchyfolge konvergiert.

Wenn Du also zeigen willst, daß der Raum nicht metrisch ist, reicht es, wenn Du eine Cauchyfolge findest, welche nicht konvergiert.

Teste mal die Folge [mm] a_n:=n. [/mm]

Gruß v. Angela

Bezug
                
Bezug
vollständig metrischer Raum: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:15 So 10.12.2006
Autor: nicebear

hi Angela

die Folge [mm] a_n [/mm] := n ist leider keine Cauchyfolge.

Bezug
                        
Bezug
vollständig metrischer Raum: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:54 So 10.12.2006
Autor: SEcki


> hi Angela
>  
> die Folge [mm]a_n[/mm] := n ist leider keine Cauchyfolge.

Soso ...

S"dann beweise das bitte!"Ecki

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de