www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - vollständige Induktion
vollständige Induktion < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

vollständige Induktion: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 08:55 So 20.11.2005
Autor: Doreen

Hallo,

wenn die andere Aufgabe nicht schon das Schlimmste für mich
ist. Ich soll auch vollgende Aufgabe durch vollständ. Induktion
oder Binomial... beweisen. Dabei schaffe ich es ja noch
nicht einmal hierfür den Induktionsanfang hinzubekommen.

Ich weiß zwar, das diese Summe unmittelbar aus dem Beweis
der Binomischen-Formel aus geht.... aber das durch vollständ. Induktion
zu beweisen....ein Rätzel...

Aufgabe: [mm] \summe_{k=0}^{n} (-1)^{k} \vektor{n\\k} [/mm] = 0

Kann mir jemand sagen, wie ich den Induktionsanfang davon in
den Griff bekomme. Denn für n=o darf ich nicht einsetzen mit n=1
funktionierts nicht wirklich... da erhalte ich:

[mm] \summe_{k=0}^{1} (-1)^{0} \vektor{1\\0} =(-1)^{0} [/mm] * [mm] \bruch{n!}{(n-k)!*k!} [/mm] = [mm] (-1)^{0} [/mm] * [mm] \bruch{1!}{(1-0)!*0!} [/mm]   ...

und das ergibt nicht NULL oder übersehe ich da was?

Wäre lieb, wenn sich hierbei auch jemand erbarmen würde
und mir hilfreiche Unterstützung trotz des vielen Tippens gibt.

Liebe Grüße und Tausend Dank an den jenigen, der mir das
erklärt...

Doreen

diese Frage habe ich in keinen anderen Forum gestellt.

        
Bezug
vollständige Induktion: Summe aus zwei(!) Summanden
Status: (Antwort) fertig Status 
Datum: 11:31 So 20.11.2005
Autor: Loddar

Guten Morgen Doreen!


Du vergisst hier die Bedeutung des Summenzeichens.

Denn für $k \ =\ 0$ und $k \ = \ 1$ haben wir ja zwei Summanden:

[mm] $\summe_{k=0}^{1} (-1)^k*\vektor{1\\k} [/mm] \ = \ [mm] \underbrace{(-1)^0*\vektor{1\\0}}_{k \ = \ 0} [/mm]  \ + \ [mm] \underbrace{(-1)^1*\vektor{1\\1}}_{k \ = \ 1} [/mm] \ = \ ...$


Und damit sollte auch der gewünschte Wert $0_$ herauskommen.


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de