www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - vollständige Induktion
vollständige Induktion < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

vollständige Induktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:07 Mo 13.02.2006
Autor: soulid

hi, habe hier ne vollständige Induktion, die definitiv mein können überschreitet.
[mm] (A+B)^{n} [/mm] =  [mm] \summe_{k=0}^{n} \vektor{n\\ k} A^{n-k} B^{k} [/mm]
also für n=1 habe ich es ja noch hinbekommen:
[mm] (A+B)^{1} [/mm] = (A+B)
[mm] \summe_{k=0}^{1} \vektor{1\\ k} A^{1-k} B^{k} [/mm] = [mm] \vektor{1\\ 0} A^{1-0} B^{0} +\vektor{1\\ 1} A^{1-1} B^{1} [/mm] =(A+B)
so dann kommt ja der Schritt: n -> n+1; also ist dann meine Behauptung:
[mm] (A+B)^{n+1} [/mm] =  [mm] \summe_{k=0}^{n+1} \vektor{n+1 \\ k} A^{n+1-k} B^{k} [/mm]
so und nun verlassen sie mich auch schon, für die einfachen simplen induktionen ist es ja nicht schwer, aber sowas habe ich noch nie gemacht.
vielleicht mag mir jemand helfen.
mfg soulid
Ich habe diese Frage in keinem anderen Forum gestellt.

        
Bezug
vollständige Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 12:26 Mo 13.02.2006
Autor: leduart

Hallo Soulid
Warum multiplizierst du nicht erstmal die Induktionsvors. also Summe bis n mit A+B und siehst dann, wie weit du kommst.
Wenn mans nicht sieht, wie es läuft, mach mal den Schritt von [mm] (A+B)^{2} [/mm]
nach [mm] (A+B)^{3} [/mm] explizit, und beobachte, was passiert!
Aber ganz ohne Vorleistung können wir dir ja nicht das einfach vorrechnen. Da das die binomische Formel ist, stehts natürlich auch in Büchern.
Gruss leduart

Bezug
        
Bezug
vollständige Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 12:51 Mo 13.02.2006
Autor: riwe

[mm] {(a+b)}^{k+1}={(a+b)}^{k}(a+b) [/mm]
nun aus multiplizieren und immer die entsprechenden potenzen zusammenfassen
[mm] {(a+b)}^{k+1}=a^{k+1}+(1+ \vektor{k \\ 1})a^{k}b+( \vektor{k \\ 1} +\vektor{k \\ 2})a^{k-1}b^{2}+....+( \vektor{k \\ s} +\vektor{k \\ s+1})a^{k-s}b^{s+1}+...+b^{k+1} [/mm]
und es gilt  [mm] \vektor{k\\ s}+ \vektor{k \\ s+1} \vektor{k+1 \\ s+1} [/mm]
einsetzen und zusammenfassen liefert das gewünschte.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de