www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Induktion" - vollständige Induktion
vollständige Induktion < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

vollständige Induktion: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 15:14 Mi 07.11.2012
Autor: Blitzmerker

Aufgabe
Seien $ [mm] r_{-1}; r_0; r_1; [/mm] ...; [mm] r_{t+1}; q_1; q_2; [/mm] ...; [mm] q_{t+1} \in [/mm] N $ mit
$ [mm] \forall [/mm] i [mm] \in [/mm] {1, ..., t} $ :
[mm] r_{i-2} [/mm] = [mm] q_{i} [/mm] * [mm] r_{i-1} [/mm] + [mm] r_{i} \wedge [/mm]  0 < [mm] r_{i}< r_{i -1} [/mm]
und
[mm] r_{t-1} [/mm] = [mm] q_{t+1} [/mm] * [mm] r_{t}; [/mm]
d.h., es gilt [mm] r_{-1} [/mm] (offenes Viereck nach unten)  [mm] r_{0} [/mm] = rt. Beweisen Sie, dass man dann gewisse  [mm] \alpha [/mm]  ;  [mm] \beta \in \IZ [/mm] mit
[mm] \alpha [/mm]  * [mm] r_{-1} [/mm] +  [mm] \beta r_{0} [/mm] = [mm] r_{t} [/mm] auf folgende Weise berechnen kann:
Seien
[mm] u_{-1} [/mm] := 0; [mm] u_{0} [/mm] := 1;
[mm] v_{-1} [/mm] := 1; [mm] v_{0} [/mm] := 0;
[mm] \forall [/mm]  i  [mm] \in [/mm]  {1,...,t} : [mm] u_{i} [/mm] := [mm] q_{i} [/mm] * [mm] u_{i-1} [/mm] + [mm] u_{i-2} \wedge v_{i} [/mm] := [mm] q_{i} [/mm] * [mm] v_{i-1} [/mm] + [mm] v_{i-2}: [/mm]
Dann gilt
[mm] r_{t} [/mm] =  [mm] \underbrace{ ((-1)^t+1 *v_{t} )*r_{-1}}_{=\alpha} [/mm]
+
[mm] \underbrace{((-1)^t * u_{t})*r_{0}}_{=\beta} [/mm]

Hinweis: Man beweise durch Induktion Äuber i  [mm] \in [/mm] {1; 2; ...; t}:
[mm] r_{i} [/mm] = [mm] (-1)^i [/mm]  * [mm] (-v_{i} [/mm] * [mm] r_{-1} [/mm] + [mm] u_{i} [/mm] * [mm] r_{0}). [/mm]



Guten Tag,

also folgendes, mir ist die Induktion ja mittlerweile ganz geläufig.
Doch bei diese Aufgabenstellung erschlägt mich wiedermal.

Ich weiß laut Aufgabe das ich dies mit der Induktion Beweisen soll.
Allerdings kann ich mir die Vorschrift der Induktion nicht herleiten.
Quasi die Gleichung womit man beginnen kann?

Wie müsste dann das Aussehen?

Mein Vorschlag [mm] \summe_{i=1}^{n} [/mm] = [mm] (-1)^i [/mm]  * [mm] (-v_{i} [/mm] * [mm] r_{-1} [/mm] + [mm] u_{i} [/mm] * [mm] r_{0}). [/mm]

und dann setze ich wie oben die Werte für [mm] r_{-1}, [/mm] r0 und für [mm] i_{1} [/mm] ein für den Induktionsanfang?

Danach das ganze dann für (i+1) für den Induktionschritt und Ausrechnen?

Mit freundlichen Grüßen,

Johannes

        
Bezug
vollständige Induktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:29 Mi 07.11.2012
Autor: fred97


> Seien [mm]r_{-1}; r_0; r_1; ...; r_{t+1}; q_1; q_2; ...; q_{t+1} \in N[/mm]

Das versteht man nun.


> mit
>  [mm]\forall i \in f1; ...; tg[/mm] :

Das aber nicht. Soll das lauten

    [mm]\forall i \in \{f1; ...; tg\}[/mm]  ?

Wenn ja, was ist dann f1, ..., was ist tg  ?????


>  [mm]r_{i-2}[/mm] = [mm]q_{i}[/mm] * [mm]r_{i-1}[/mm] + [mm]r_{i}[/mm] ^ 0 < [mm]r_{i}< r_{i -1}[/mm]

Was bedeutet [mm]r_{i}[/mm] ^ 0  ?? Soll das [mm] r_{i}^0 [/mm] lauten ? Wohl kaum ...

>  
> und
>  [mm]r_{t-1}[/mm] = [mm]q_{t+1}[/mm] * [mm]r_{t};[/mm]
>  d.h., es gilt [mm]r_{-1} \wedge r_{0}[/mm] = rt.



Was soll  [mm]r_{-1} \wedge r_{0}[/mm] = rt  bedeuten ???

So, und jetzt hab ich keine Lust mehr, weitere Ungereimtheiten zu nennen

FRED

> Beweisen Sie,
> dass man dann gewisse  [mm]\alpha[/mm]  ;  [mm]\beta \in \IZ[/mm] mit
>   [mm]\alpha[/mm]  * [mm]r_{-1}[/mm] +  [mm]\beta r_{0}[/mm] = [mm]r_{t}[/mm] auf folgende
> Weise berechnen kann:
>  Seien
>  [mm]u_{-1}[/mm] := 0; [mm]u_{0}[/mm] := 1;
>  [mm]v_{-1}[/mm] := 1; [mm]v_{0}[/mm] := 0;
>   [mm]\forall[/mm]  i  [mm]\in[/mm]  {1,...,t} : [mm]u_{i}[/mm] := [mm]q_{i}[/mm] * [mm]u_{i-1}[/mm] +
> [mm]u_{i-2} \wedge v_{i}[/mm] := [mm]q_{i}[/mm] * [mm]v_{i-1}[/mm] + [mm]v_{i-2}:[/mm]
>  Dann gilt
>  [mm]r_{t}[/mm] =  [mm]\underbrace{ ((-1)^t+1 *v_{t} )*r_{-1}}_{=\alpha}[/mm]
>  
> +
>  [mm]\underbrace{((-1)^t * u_{t})*r_{0}}_{=\beta}[/mm]
>  
> Hinweis: Man beweise durch Induktion Äuber i  [mm]\in[/mm] {1; 2;
> ...; t}:
>  [mm]r_{i}[/mm] = [mm](-1)^i[/mm]  * [mm](-v_{i}[/mm] * [mm]r_{-1}[/mm] + [mm]u_{i}[/mm] * [mm]r_{0}).[/mm]
>  Guten Tag,
>  
> also folgendes, mir ist die Induktion ja mittlerweile ganz
> geläufig.
>  Doch bei diese Aufgabenstellung erschlägt mich
> wiedermal.
>  
> Ich weiß laut Aufgabe das ich dies mit der Induktion
> Beweisen soll.
>  Allerdings kann ich mir die Vorschrift der Induktion nicht
> herleiten.
>  Quasi die Gleichung womit man beginnen kann?
>  
> Wie müsste dann das Aussehen?
>  
> Mein Vorschlag [mm]\summe_{i=1}^{n}[/mm] = [mm](-1)^i[/mm]  * [mm](-v_{i}[/mm] *
> [mm]r_{-1}[/mm] + [mm]u_{i}[/mm] * [mm]r_{0}).[/mm]
>  
> und dann setze ich wie oben die Werte für [mm]r_{-1},[/mm] r0 und
> für [mm]i_{1}[/mm] ein für den Induktionsanfang?
>  
> Danach das ganze dann für (i+1) für den Induktionschritt
> und Ausrechnen?
>  
> Mit freundlichen Grüßen,
>  
> Johannes  


Bezug
                
Bezug
vollständige Induktion: "Rückfrage"
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:50 Mi 07.11.2012
Autor: Blitzmerker


Tut mir Leid gerade empfinde ich das als ein wenig ungerecht.

Natürlich soll das heißen

[mm] \forall [/mm] i [mm] \in [/mm] {1,...,t} ;

[mm] r_{i} \wedge [/mm] 0 ;


und [mm] r_{-1} [/mm] (Viereck Kante unten offen, weiß nicht wie ich das darstellen soll) [mm] r_{0} [/mm] = rt

?
Also ich bin der Meinung wenn du dir mein dein Zitat der von mir geposteten Frage nocheinmal anschaust wirst du keine weiteren Fehler finden in der Beschreibung der Aufgabe.

Mit feundlichen Grüßen

Bezug
                        
Bezug
vollständige Induktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:54 Mi 07.11.2012
Autor: angela.h.b.


> ?
>  Also ich hab alles korrekt abgetippt und ich weiß jetzt
> nicht wo du dies hernimmst denn in deinem Zitat taucht das
> überhaupt nicht auf,

Hallo,

was meinst Du mit "dies" und "das"?

Bei mir sieht es so aus wie das, was Fred bemängelt - und es macht mich ebenso ratlos.

> es sei denn mein Bildschirm
> projeziert etwas anderes.

Ist wohl so.

LG Angela

>  
> Also ich bin der Meinung wenn du dir mein dein Zitat der
> von mir geposteten Frage nocheinmal anschaust wirst du
> keine Fehler finden in der Beschreibung der Aufgabe.
>  
> Mit feundlichen Grüßen


Bezug
        
Bezug
vollständige Induktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:42 Mi 07.11.2012
Autor: Blitzmerker

Aufgabe
Überarbeitet

Ich hoffe ich hab nun alle Ungereimtheiten beseitigen können.

Bitte um Rat.

Bezug
        
Bezug
vollständige Induktion: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:20 Fr 09.11.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de