www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis des R1" - vollständige induktion
vollständige induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

vollständige induktion: aufgabe
Status: (Frage) beantwortet Status 
Datum: 18:45 Mo 03.04.2006
Autor: nevermore

Aufgabe
Summe von k=1 bis n;
[mm] k^2 [/mm] = (n*(n+1)*(2n+1))/6

Hallo, ich hab heute mit meinem studium angefangen, also genauer gesagt mit dem vorkurs zum studium... :-))
na ja, also ich hab das problem, dass ich mit der vollständigen induktion einfach nicht klarkomme.
ich habe das thema trotz mathe-lk in der schule dort nie gelernt, und nach dem heutigen crash-kurs steh ich immer noch im dunkeln.

in der übung hatten wir jetzt konkret die genannte aufgabe:



wäre super wenn mir vielleicht jemand genau diese aufgabe kurz durchrechnen könnte und mir es daran erklären könnte!!

vielen dank schonmal im vorraus!! :-)



Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:  http://www.onlinemathe.de/read.php?topicid=1000010347&read=1&kat=Studium

        
Bezug
vollständige induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 19:28 Mo 03.04.2006
Autor: dormant

Hi!

Also du willst beweisen, dass die Summe der Quadrate der ersten n ganzen Zahlen gleich [mm] \bruch{n(n+1)(2n+1)}{6}. [/mm] Man geht so vor:

1. Man überprüft, ob das für n=1 gilt (1*2*3/6=1 - stimmt).
2. Man nimmt an, dass die Sache für irgendein n gilt und versucht anhand dieser Annahme es auch für n+1 gilt.

Wenn du das schaffst, dann hast du die Aussage bewiesen.

Also OK - die Summe der Quadrate der Zahlen von 1 bis 1 ist eins und die Formel haben wir unter 1. erfolgreich angewandt - das heißt man darf annehmen, dass die Aussage für irgendein n (nämlich für n=1) gilt. Nun weiß man:

[mm] \summe_{k=1}^{n}k^{2}=\bruch{n(n+1)(2n+1)}{6} [/mm] und zu zeigen wäre:

[mm] \summe_{k=1}^{n+1}k^{2}=\bruch{(n+1)(n+2)(2n+3)}{6}. [/mm]

Das sollte dir keine Probleme bereiten hoffe ich.

Gruß,
dormant

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de