www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differenzialrechnung" - vollständige induktion
vollständige induktion < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

vollständige induktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:55 So 05.11.2006
Autor: alex1988

Aufgabe 1
Aufgabe 1: 1+2+3.. n = 1/2 n (n+1)

Aufgabe 2: Zeigen sie, dass für alle n € N mit n >= 2 und jedes x € R mit x > -1 und x ungleich 0 gilt :  (1 + x [mm] )^n [/mm] > 1 + n * x


Aufgabe 2
Aufgabe1:   1+2+3+.... n =  1/2n * ( n + 1 )

Aufgabe2:  Zeigen sie, dass für alle n € N mit n => 2 und jedes x € R mit x > -1 und x (ungleich) 0 gilt:

[mm] (1+x)^n [/mm] > 1+ n *x          ( ^n = Hoch n  )  

1+2..n+n+1 = 1/2 * ( n + 1 )
= 1/2 * ( n + 1 ) + (n+1)

so weit ist es mir klar nur beim zusammenfassen habe ich große schwierigkeiten, aus dem lösungsheft weiß ich dass der nächste schritt:

1/2 ( n(n+1) + 2 (n+1))   ist.
Und als lösung kommt dann:  1/2((n+2) ( n+1)) heraus, was raus kommen muss kann ich nachvollziehen nur wie es zusammengefasst wird ist mir schleierhaft


Zu Aufgabe 2:

für n = 2 lässt es sich ja beweisen da durch binomische formel: 1 + 2x + x² > 1 + 2x          raus kommt
Nun muss man es ja für k € N beweisen also:

( 1+x [mm] )^k [/mm] > 1 + k * x und es muss  ( 1+x [mm] )^k [/mm] + 1 > 1+ ( k+1 )*x gezeigt werden

aus ( 1 + k [mm] )^k+1 [/mm] ergibt sich dann ( 1+x ) * ( 1+ x [mm] )^k [/mm]  > "( 1+x )" *( 1 + k *x)
nun versteh ich nicht wo kommt das ( 1 + x ) her ( das dass ich in " " gesetzt habe )

der nächste schritt ist dann
= 1 + (k + 1 )x + kx² > 1+ ( k+1) * x    
ich versteh wieder nicht wie es aufgelöst wurde, was ist mit dem hoch k passiert ( 1+x [mm] )^k [/mm] irgendwie blick ich am schluss garnicht mehr durch



Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
vollständige induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 14:44 So 05.11.2006
Autor: angela.h.b.


> Aufgabe 1: 1+2+3.. n = 1/2 n (n+1)
>  
> Aufgabe 2: Zeigen sie, dass für alle n € N mit n >= 2 und
> jedes x € R mit x > -1 und x ungleich 0 gilt :  (1 + x [mm])^n[/mm]
> > 1 + n * x


Hallo,

[willkommenmr].

Diese Dingelchen werdern per vollständige MBInduktion bewiesen, es ist mir nicht ganz klar, ob Dir das klar ist...

Ich gehe nun davon aus, daß Du weißt, wie vollständige Induktion funktioniert, ansonsten:schlau machen oder nachfragen.

Zu1)
Im Induktionsschritt ist zu zeigen, daß [mm] 1+2+...+n+(n+1)=\bruch{1}{2}(n+1)((n+1)+1) [/mm] ist, also = [mm] \bruch{1}{2}(n+1)(n+2) [/mm]

Starte mit
1+2+...+n+(n+1)
= (1+2+...+n)+(n+1)

In der ersten Klammer kannst Du nun die Induktionsvoraussetzung einsetzen, danach klammerst Du (n+1) aus. Anschließend nur noch eine zielgerichtete Umformung. Fertig.

zu 2) Das ist die Bernoulli-Ungleichung.

Gezeigt werden muß im Induktionsschritt: [mm] (1+x)^{k+1}>1+(k+1)x [/mm]

Es ist [mm] (1+x)^{k+1}=(1+x)^k(1+x) [/mm]      , das ist Rechnen mit Potenzen.

          [mm] (1+x)^k [/mm] kannst Du nun mit der Induktionsvoraussetzung abschätzen
           und Du erhältst

>(1+x)(1+kx)= [mm] 1+kx+x+x^2 [/mm] = 1+(k+1)x [mm] +x^2 [/mm]
          
           [mm] x^2 [/mm] ist immer größer als 0, also ist das Ganze

> 1+(k+1)x


Wesentlich ist bei beiden Aufgaben das verständnis der Induktion und daraus folgend das Einsetzen der Induktionsvoraussetzung.

Gruß v. Angela
              

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de