www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Induktionsbeweise" - vollständige induktion
vollständige induktion < Induktion < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Induktionsbeweise"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

vollständige induktion: frage zur schreibweise.
Status: (Frage) beantwortet Status 
Datum: 18:19 Sa 05.03.2011
Autor: freak-club

Aufgabe
Zeigen sie mit Hilfe  der vollständigen Induktuion dass das Produkt aus n*(n+1)*(2n+1)  für alle natürlichen Zahlen  n größer gleich 1 durch 6 teilbar ist.

hallo, meine frage betrifft die schreibweise des 2. schrittes und das ende vom 3. schritt. ich schreibe dennoch die ganze aufgabe hier hin.

1.) induktionsanfang: die identität gilt für n=1

1*(1+1)*(2*1+1) = 1*2*3=6 und 6 ist [mm] \equiv [/mm] 0 mod 6

2.) induktionsannahme: identität gilt für alle k [mm] \in \IN [/mm] mit [mm] 1\le [/mm] k [mm] \le [/mm] n

3.) Induktionsschritt: zu zeigen ist dass die identität auch für (n+1) gilt

(n+1)*(n+1+1)*(2*(n+1)+1) = [mm] (n^2+3n+2) [/mm] * (2n+3) = [mm] (2n^3+9n^2+13n+6) [/mm]

so nun schreibe ich dann immer kurz hin dass schritt 1) induktionsanfang ausmultipliziert [mm] 2n^3+3n^2+n [/mm] ist.

das ziehe ich mir dann oben herraus.

das ergibt: [mm] (2n^3+3n^2+n) [/mm] + [mm] 6n^2+12n+6 [/mm]

dann sage ich: der erste summand ist ja mein induktionsanfang, und der 2. summand ist = [mm] 6*(n^2+2n+1) [/mm] also ein vielfaches von 6 und somit sind beide summanden  equiv 0 mod 6 also auch das ergebnis equiv 0 mod 6.

nun gehts eben um diesen letzten schritt. ein kollege meint ich habe ja nicht den induktionsanfang wieder herraus gezogen, sondern die umgeformte version. ich müsse aber die genau aufgabenstellung sozusagen herraus ziehen also n*(n+1)*(2n+1)

ist das so wie ichs gemacht habe richtig? oder darf man das nicht. sprich habe ich es mir da zu einfach gemacht

        
Bezug
vollständige induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 18:56 Sa 05.03.2011
Autor: kamaleonti

Hi,
> Zeigen sie mit Hilfe  der vollständigen Induktuion dass
> das Produkt aus n*(n+1)*(2n+1)  für alle natürlichen
> Zahlen  n größer gleich 1 durch 6 teilbar ist.
>  hallo, meine frage betrifft die schreibweise des 2.
> schrittes und das ende vom 3. schritt. ich schreibe dennoch
> die ganze aufgabe hier hin.
>  
> 1.) induktionsanfang: die identität gilt für n=1
>  
> 1*(1+1)*(2*1+1) = 1*2*3=6 und 6 ist [mm]\equiv[/mm] 0 mod 6
>  
> 2.) induktionsannahme: identität gilt für alle k [mm]\in \IN[/mm]
> mit [mm]1\le[/mm] k [mm]\le[/mm] n
>  
> 3.) Induktionsschritt: zu zeigen ist dass die identität
> auch für (n+1) gilt
>  
> (n+1)*(n+1+1)*(2*(n+1)+1) = [mm](n^2+3n+2)[/mm] * (2n+3) =
> [mm](2n^3+9n^2+13n+6)[/mm]
>
> so nun schreibe ich dann immer kurz hin dass schritt 1)
> induktionsanfang ausmultipliziert [mm]2n^3+3n^2+n[/mm] ist.

Du meinst die IV für n:
[mm] \qquad n(n+1)(2n+1)=2n^3+3n^2+n [/mm]

>  
> das ziehe ich mir dann oben heraus.
>  
> das ergibt: [mm](2n^3+3n^2+n)[/mm] + [mm]6n^2+12n+6[/mm]
>
> dann sage ich: der erste summand ist ja mein
> induktionsanfang, und der 2. summand ist = [mm]6*(n^2+2n+1)[/mm]
> also ein vielfaches von 6 und somit sind beide summanden  
> equiv 0 mod 6 also auch das ergebnis equiv 0 mod 6.
>  
> nun gehts eben um diesen letzten schritt. ein kollege meint
> ich habe ja nicht den induktionsanfang wieder herraus
> gezogen, sondern die umgeformte version. ich müsse aber
> die genau aufgabenstellung sozusagen herraus ziehen also
> n*(n+1)*(2n+1)

Ist doch der gleiche Ausdruck, muss natürlich gekennzeichnet werden.
Nochmal: Verwendet wird die IV, nicht der I-Anfang ;-)

>  
> ist das so wie ichs gemacht habe richtig? oder darf man das
> nicht. sprich habe ich es mir da zu einfach gemacht

Es stimmt schon, aber aufschreiben kann man es strukturierter:
z.z. [Induktionsbehauptung für n+1]: [mm] $(n+1)(n+2)(2n+3)\equiv0\mod [/mm] 6$
Zum beweis wird die IB umgeformt:
[mm] (n+1)(n+2)(2n+3)=2n^3+9n^2+13n+6=\blue{2n^3+3n^2+n}+6n^2+12n+6=\blue{n(n+1)(2n+1)}+6(n^2+2n+1) [/mm]
Für das blaue wird die IV verwendet und der Rest ist wie von dir begründet durch 6 teilbar. Damit folgt die Behauptung auch für n+1

Gruß


Bezug
                
Bezug
vollständige induktion: rückfrage
Status: (Frage) beantwortet Status 
Datum: 19:04 Sa 05.03.2011
Autor: freak-club

kurze frage,...war ist IV und was Ist IB. gut induktionsanfang ist falsch das stimmt. das ist ja nicht der ausgangsausdruck, sondern ist ja explizit der beweis mit n=1. also abgesehen von den fragen oben, reicht es vollkommen wenn ich das was ich geschrieben habe, nochmal so hisnchreibe wies in der aufgabe stand...?

Bezug
                        
Bezug
vollständige induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 19:08 Sa 05.03.2011
Autor: kamaleonti


> kurze frage,...war ist IV und was Ist IB.

Induktionsvoraussetzung & - behauptung.

> gut induktionsanfang ist falsch das stimmt. das ist ja nicht
> der ausgangsausdruck, sondern ist ja explizit der beweis
> mit n=1. also abgesehen von den fragen oben, reicht es
> vollkommen wenn ich das was ich geschrieben habe, nochmal
> so hisnchreibe wies in der aufgabe stand...?

Was meinst du mit "wies in der Aufgabe stand"? Verwendet wird die Induktionsvoraussetzung, das ist die Aussage für n.
Diese sieht genauso wie die Behauptung in der Aufgabenstellung aus.

LG

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Induktionsbeweise"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de