www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Schul-Analysis" - volumen von rotationskörpern
volumen von rotationskörpern < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

volumen von rotationskörpern: Frage
Status: (Frage) beantwortet Status 
Datum: 17:38 Do 25.11.2004
Autor: jule_1985

hallo!
ich schreibe morgen eine Klausur und muss dafür wissen wie man die formel für die volumenberechnung eines Kreiskörpers(V= [mm] \pi/3*r²h) [/mm] mithilfe der formel V= [mm] \pi*\integral_{a}^{b} [/mm] {f²(x) dx}nachweisen kann.
wäre echt nett wenn mir jemand helfen könnte.




Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
volumen von rotationskörpern: Ansatz
Status: (Antwort) fertig Status 
Datum: 18:20 Do 25.11.2004
Autor: Loddar

Hallo Jule,

[willkommenmr] !!


> [mm]V = \pi/3*r²h[/mm]

Diese Formel halte ich für ein Gerücht. Es dürfte doch eigentlich nur der Radius r auftreten auf der rechten Seite ...
Schau' doch nochmals in der Formelsammlung nach.


> V=[mm]\pi*\integral_{a}^{b} {f²(x) dx}[/mm]nachweisen kann.
>  wäre echt nett wenn mir jemand helfen könnte.
>  

Am besten wir stellen uns einen Kreis vor mit Mittelpunkt im Ursprung.
Betrachten wollen wir nun nur den Ausschnitt im 1. Quadranten.

Gemäß Pythagoras wissen wir doch:
[mm] $x^2 [/mm] + [mm] y^2 [/mm] = [mm] r^2$ [/mm]

Umgestellt: [mm] $y^2 [/mm] = [mm] r^2 [/mm] - [mm] x^2$. [/mm]
Dieses [mm] $y^2$ [/mm] enstspricht nun exakt unserem [mm] $f^2(x)$ [/mm] in der Integralformel.

Welche Grenzen müssen wir nun einsetzen?
Da wir uns ja (vorerst) nur im 1. Quadranten bewegen, beginnen wir mit a=0 und enden bei b=r.

Unsere Volumenformel lautet nun:
[mm] $\pi*\integral_{0}^{r}{y^2 dx} [/mm] = [mm] \pi*\integral_{0}^{r}{(r^2 - x^2) dx}$ [/mm]

Vergessen dürfen wir nur nicht, daß wir auf diesen Wege ja nur das Volumen einer Halbkugel berechnen.
Für unser gewünschtes Endergebnis müssen wir diesen Wert also noch verdoppeln. Die endgültige Formel lautet also:
[mm] $V_{Kugel} [/mm] = [mm] 2*\pi*\integral_{0}^{r}{y^2 dx} [/mm] = [mm] \pi*\integral_{0}^{r}{(r^2 - x^2) dx}$ [/mm]

Kommst Du nun klar?

Grüße Loddar

Bezug
                
Bezug
volumen von rotationskörpern: Kreiskörper?
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:17 Do 25.11.2004
Autor: e.kandrai

Habt ihr beiden da vielleicht irgendwie aneinander vorbeigeredet?

Also erstmal (für mich selber, zum Verständnis): was genau versteht man unter einem Kreiskörper? Ist es wirklich nur eine Kugel, wie's Loddar hergeleitet hat? Oder zählen da Körper dazu, die einen (oder mehrere) Kreis(e) als Grund-(oder Deck-)fläche besitzen (wie Kegel, Zylinder)?
Jule hat uns ja die Formel für nen Kegel präsentiert... Bin mir jetzt nur wegen den Begriffen nicht sicher, ob's wirklich ein Mißverständnis war.



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de