www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Schul-Analysis" - waagrechte asymptote
waagrechte asymptote < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

waagrechte asymptote: Frage
Status: (Frage) beantwortet Status 
Datum: 09:35 Di 16.11.2004
Autor: Lucie

Guten Morgen, also ich wüsste gern, ob dass so stimmt:

1. Wenn der Grad des Nenners größer ist als der des Zählers ist die x-Achse waagrechte Asymptote

2. Wenn der Grad bei beiden gleich hoch ist ist es nicht die x-Achse.
Aber wie errechne ich sie dann?

3. Wenn der Grad des Zählers größer ist als der des Nenners ist die Asymptote schief.
Was heißt das denn?

Und was wenn es keine waagrechte Asymptote gibt, was erhalt ich dann als Lösung?

Vielen Dank!



        
Bezug
waagrechte asymptote: Antwort
Status: (Antwort) fertig Status 
Datum: 10:38 Di 16.11.2004
Autor: Sigrid

Hallo

> Guten Morgen, also ich wüsste gern, ob dass so stimmt:
>  
> 1. Wenn der Grad des Nenners größer ist als der des Zählers
> ist die x-Achse waagrechte Asymptote

das ist richtig

>  
> 2. Wenn der Grad bei beiden gleich hoch ist ist es nicht
> die x-Achse.
> Aber wie errechne ich sie dann?

  Du kannst eine Polynomdivision durchführen. Der ganzrationale Anteil liefert die Asymptote.
Beispiel:
[mm] \bruch {2x+1}{3x+1} = (2x+1):(3x+1)= \bruch {2}{3}+\bruch {\bruch {1}{3}} {3x+1} [/mm]
Damit ist die Gleichung der Asymptote [mm] y= \bruch {2}{3} [/mm]
Du siehst vielleicht, wie man die Asymptote auch direkt ablesen kann.

> 3. Wenn der Grad des Zählers größer ist als der des Nenners
> ist die Asymptote schief.
>  Was heißt das denn?

Wenn der Grad des Zählers um 1 größer ist als der Grad des Nenners, bekommst du als Asymptote eine Gerade mit von 0 verschiedener Steigung, das ist die schräge Asymptote.
Ist die Differenz von Zähler- und Nennergrad größer als 1, erhälst du eine Näherungskurve.
Den genauen Term erhälst du jeweils durch die Polynomdivision.

> Und was wenn es keine waagrechte Asymptote gibt, was erhalt
> ich dann als Lösung?
>  
> Vielen Dank!
>  
> Hilft dir das?

Gruß Sigrid

>  


Bezug
                
Bezug
waagrechte asymptote: rationale Funktion?
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:46 Di 16.11.2004
Autor: Grizzlitiger

Hallo

Du kannst eine Polynomdivision durchführen. Der rationale Anteil liefert die Asymptote.

Muss es nicht heißen ganzrationale Teil?! Denn der echt gebrochen rationale Rest ist doch auch eine rationale Funktion oder nicht?

MfG Johannes

Bezug
                        
Bezug
waagrechte asymptote: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:50 Mi 17.11.2004
Autor: Sigrid

Hallo Johannes,

danke für die Korrektur. Natürlich muss es ganzrationaler Teil heißen.
Ich habe meine Antwort auch schon korrigiert.

Gruß Sigrid.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de