www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Topologie und Geometrie" - (weg)zusammenhang R^n
(weg)zusammenhang R^n < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

(weg)zusammenhang R^n: Frage / Beweisidee
Status: (Frage) beantwortet Status 
Datum: 18:36 Sa 29.10.2011
Autor: tonno

Aufgabe
Zu zeigen: G := [mm] \IR^n \backslash [/mm] {(0,...,0)} für n [mm] \ge [/mm] 3 einfach zusammenhängend.

Die Behauptung leuchtet sicher ein, aber was wäre ein kurzer Weg für den analytischen Beweis? Mir fehlt einfach die Idee für den Beweis.
Das einzige was mir gerade so vorschwebt wäre: Beweis per Widerspruch, also eine (beliebige) geschlossene Kurve vorauszusetzen, die den Nullpunkt umschließt, und anzunehmen, dass sie sich nur auf diesen zusammenziehen lässt. Aber das erscheint mir bei weitem zu schwammig.
Ich hoffe mal einer erbarmt sich und schubst mich vom Schlauch runter ;)

        
Bezug
(weg)zusammenhang R^n: Antwort
Status: (Antwort) fertig Status 
Datum: 19:07 Sa 29.10.2011
Autor: felixf

Moin!

> Zu zeigen: G := [mm]\IR^n \backslash[/mm] {(0,...,0)} für n [mm]\ge[/mm] 3
> einfach zusammenhängend.
>
>  Die Behauptung leuchtet sicher ein, aber was wäre ein
> kurzer Weg für den analytischen Beweis? Mir fehlt einfach
> die Idee für den Beweis.
>  Das einzige was mir gerade so vorschwebt wäre: Beweis per
> Widerspruch, also eine (beliebige) geschlossene Kurve
> vorauszusetzen, die den Nullpunkt umschließt, und
> anzunehmen, dass sie sich nur auf diesen zusammenziehen
> lässt. Aber das erscheint mir bei weitem zu schwammig.
>  Ich hoffe mal einer erbarmt sich und schubst mich vom
> Schlauch runter ;)  

Wir hatten das Thema schonmal hier diskutiert. Der Ansatz in diesem Post fuehrt zum Ziel.

Die Grundidee (in zwei Schritten ist):

a) zeige, dass jede stetige Kurve [mm] $\alpha [/mm] : [0, 1] [mm] \to [/mm] U$ in einer offenen Menge $U [mm] \subseteq \IR^n$ [/mm] in $U$ zu einem Polygonzug von [mm] $\alpha(0)$ [/mm] nach [mm] $\alpha(1)$ [/mm] homotop ist;

b) zeige, dass jeder geschlossene Polygonzug in [mm] $\IR^n \setminus \{ 0 \}$ [/mm] kontrahierbar ist.

Bei b) bietet es sich an, das erstmal fuer eine kleinere Menge als [mm] $\IR^n \setminus \{ 0 \}$ [/mm] zu zeigen (wo man die Aussage mit Hilfe einer Verschiebung und Skaleriung erhalten kann) und dann zu zeigen, dass jeder Polygonzug in [mm] $\IR^n \setminus \{ 0 \}$ [/mm] in einer solchen Menge enthalten ist. Wenn du eine Idee brauchst, wie diese Menge aussehen soll, guck in den Link. Wenn du lieber selber drueber nachdenken willst, dann warte mit dem Link ;-)

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de