www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionalanalysis" - wesentliches Spektrum
wesentliches Spektrum < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

wesentliches Spektrum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:04 Mo 04.07.2011
Autor: Braten

Hallo,

ich habe eine Frage bezüglich des wesentlichen Spektrums eines linearen Operators T:X->X.
Dabei ist das wesentliche Spektrumd definiert als: Ess.(T):={c [mm] \in \IC: [/mm] (T-c) ist nicht Fredholm}.

Ich glaube, dass dies eine Teilmenge vom Spektrum ist, da Operatoren, die nicht Fredholm sind, auch nicht beschränkt invertierbar sind mit vollem Definitionsbereich.
Aber im Allgemeinen enthält das spektrum doch noch mehr elemente, oder nicht?
Ich frage deshalb, weil ich gerade gelesen habe:
Falls X ein Banachraum ist, dann ist die Menge P(T):={c [mm] \in \IC [/mm] : (T-c) ist Fredholm}- d.h. das komplement des essentiellen Spektrums- eine Teilmenge der Resolventenmenge von T ist.

Wie kann das sein? Also beides Gleichzeitig kann doch nicht gelten, oder doch?

Liebe Grüße

        
Bezug
wesentliches Spektrum: Antwort
Status: (Antwort) fertig Status 
Datum: 08:41 Di 05.07.2011
Autor: fred97

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

> Hallo,
>  
> ich habe eine Frage bezüglich des wesentlichen Spektrums
> eines linearen Operators T:X->X.
>  Dabei ist das wesentliche Spektrumd definiert als:
> Ess.(T):={c [mm]\in \IC:[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

(T-c) ist nicht Fredholm}.

>  
> Ich glaube, dass dies eine Teilmenge vom Spektrum ist, da
> Operatoren, die nicht Fredholm sind, auch nicht beschränkt
> invertierbar sind mit vollem Definitionsbereich.

Stimmt.

>  Aber im Allgemeinen enthält das spektrum doch noch mehr
> elemente, oder nicht?

Ja


>  Ich frage deshalb, weil ich gerade gelesen habe:
>  Falls X ein Banachraum ist, dann ist die Menge P(T):={c
> [mm]\in \IC[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

: (T-c) ist Fredholm}- d.h. das komplement des

> essentiellen Spektrums- eine Teilmenge der Resolventenmenge
> von T ist.

Das ist falsch. Ist c in der Resolventenmenge, so ist c \in P(T). Es gilt also:

             Resolventenmenge  von T  \subseteq P(T)

FRED

>  
> Wie kann das sein? Also beides Gleichzeitig kann doch nicht
> gelten, oder doch?
>  
> Liebe Grüße


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de