www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - wieder mal folgen
wieder mal folgen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

wieder mal folgen: min einer folge
Status: (Frage) beantwortet Status 
Datum: 13:22 So 30.11.2008
Autor: zlatko

Aufgabe
es seien [mm] (a_n)_{n\ge0} [/mm] und [mm] (b_n)_{n\ge0} [/mm] konvergente Folge mit [mm] \limes_{n\rightarrow\infty} a_n [/mm] = a und [mm] \limes_{n\rightarrow\infty} b_n [/mm] = b

Die Folge [mm] (c_n)_{n\ge0} [/mm] sei definiert durch [mm] c_n [/mm] = min [mm] (a_n, b_n) [/mm]

Zeigen sie das auch [mm] (c_n)_{n\ge0} [/mm] konvergent ist und dass für ihren grenzwert gilt [mm] \limes_{n\rightarrow\infty}c_n [/mm] = min [mm] (a_n, b_n) [/mm]

hmm ok ansatz :D

ok das die ersten beiden mit =a und =b konvergent sind ok, aber was soll ich unter min verstehen?
und kann ich dann auch z.b für [mm] d_n= [/mm] max [mm] (a_n,b_n) [/mm] zeigen wenn schon es ein min gibt?



        
Bezug
wieder mal folgen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:30 So 30.11.2008
Autor: Al-Chwarizmi


> es seien [mm](a_n)_{n\ge0}[/mm] und [mm](b_n)_{n\ge0}[/mm] konvergente Folgen

> mit [mm]\limes_{n\to\infty} a_n[/mm] = a und [mm]\limes_{n\to\infty} b_n[/mm] = b
>  
> Die Folge [mm](c_n)_{n\ge0}[/mm] sei definiert durch [mm]c_n[/mm] = min [mm](a_n, b_n)[/mm]
>  
> Zeigen sie das auch [mm](c_n)_{n\ge0}[/mm] konvergent ist und dass
> für ihren grenzwert gilt [mm]\limes_{n\rightarrow\infty}c_n[/mm] =  min [mm](a_n, b_n)[/mm]
>  
> ok das die ersten beiden mit =a und =b konvergent sind ok,

(dies ist die Voraussetzung des Satzes)

> aber was soll ich unter min verstehen?

min(x,y) ist die kleinere der beiden Zahlen x und y
(oder min(x,y)=x=y, falls keine kleiner als die andere ist)

>  und kann ich dann auch z.b für [mm]d_n=[/mm] max [mm](a_n,b_n)[/mm] zeigen
> wenn schon es ein min gibt?

Aus dem Satz - wenn er denn bewiesen ist - kann man
leicht den analogen Satz für das Maximum herleiten,
dies ist aber hier nicht gefragt.


LG

Bezug
                
Bezug
wieder mal folgen: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 15:18 So 30.11.2008
Autor: zlatko

hi danke für die schnelle antwort!

d.h. das c [mm] \ge [/mm] a und c [mm] \ge [/mm] b sei !
wenn ich also beweisen kann das der grenzwert im min von a und b ist dann ist die folge automatisch konvergent!
ist das dann infima der folge?

c ist also (in der aufgabe definiert) c= min(a,b), wenn aber a und b konvergent sind dann ist auch doch c automatisch durch ihren min punkt konvergent oder?

gruß

Bezug
                        
Bezug
wieder mal folgen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:20 Di 02.12.2008
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de