www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stochastik" - wieviele runden damit erfolg?
wieviele runden damit erfolg? < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

wieviele runden damit erfolg?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:32 Di 18.04.2006
Autor: juicee

Aufgabe
A und B treten gegeneinander an. A hat eine ERfolgswahrscheinlichkeit von 0,6 und B dementsprechend von 0,4. ein wettbewerb soll aus 3 begegnungen bestehen. sieger ist, wer min. 2 begegnungen gewinnt.
a) wie groß ist die chance für B einen wettbewerb zu gewinnen?
b) wie viele wettbewerbe zwischen A und B müssen min. stattfinden, damit B mit einer WSK von min. 95% min. 1 mal gewinnt?

hallo, ich komme mit dem 2. teil der aufgabe nicht zurecht.
bei a) hab ich 35,2% als chance raus, aber bei b) fällt mir nichts weiter ein, als in der tabelle für einen wert bei p=0,4 zu gucken, der größer als 0,95 ist. allerdings fehlen mir ja n und k zum nachgucken....
wäre wirklich lieb wenn mir das jemand erkären könnte...!!
danke ;)

        
Bezug
wieviele runden damit erfolg?: Antwort
Status: (Antwort) fertig Status 
Datum: 20:52 Di 18.04.2006
Autor: Zwerglein

Hi, juicee,

> A und B treten gegeneinander an. A hat eine
> ERfolgswahrscheinlichkeit von 0,6 und B dementsprechend von
> 0,4. ein wettbewerb soll aus 3 begegnungen bestehen. sieger
> ist, wer min. 2 begegnungen gewinnt.
>  a) wie groß ist die chance für B einen wettbewerb zu
> gewinnen?
>  b) wie viele wettbewerbe zwischen A und B müssen min.
> stattfinden, damit B mit einer WSK von min. 95% min. 1 mal
> gewinnt?

>  bei a) hab ich 35,2% als chance raus,

Richtig!

> aber bei b) fällt
> mir nichts weiter ein, als in der tabelle für einen wert
> bei p=0,4 zu gucken, der größer als 0,95 ist. allerdings
> fehlen mir ja n und k zum nachgucken....

Die ist auch schwierig, aber ich versuch's mal, Dir zu erklären:
Die Wahrscheinlichkeit dafür, dass B einen WETTBEWERB (nicht: ein Spiel!!!) gewinnt, beträgt nach Deiner (richtigen) Rechnung aus a) 0,352.
Dies ist die neue Trefferwahrscheinlichkeit einer Bernoulli-Kette (Binomialverteilung) mit unbekannter Kettenlänge n.
B soll mindestens 1 mal (bei n möglichen Wettbewerben) gewinnen, also:
1 mal, 2 mal, 3 mal, ... n mal.
Klar, dass man hier mit dem Gegenergeignis arbeitet. Dies lautet: B gewinnt kein mal, also 0 mal.
Die Wahrscheinlichkeit dafür, dass B bei n Wettbewerben 0 mal gewinnt ist:
P(X=0) = [mm] \vektor{n \\ 0}*0,352^{0}*0,648^{n} [/mm] = [mm] 0,648^{n}. [/mm]

Da B mit einer Wahrscheinlichkeit von mindestens 95% (=0,95) mindestens einmal gewinnen soll, darf er mit einer Wahrscheinlichkeit von HÖCHSTENS 5% keinmal gewinnen!
Daher muss [mm] 0,648^{n} \le [/mm] 0,05 sein.
Naja: Und daraus musst Du nun n berechnen!

(Zur Kontrolle: n [mm] \ge [/mm] 6,9; d.h.: Mindestens 7 solcher Wettbewerbe müssen durchgeführt werden!)

mfG!
Zwerglein

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de