www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 5-7" - wurzelgleichungen
wurzelgleichungen < Klassen 5-7 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 5-7"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

wurzelgleichungen: lösen von wurzelgleichungen
Status: (Frage) beantwortet Status 
Datum: 19:14 Mi 23.11.2005
Autor: bjoern88

hey leute ich kann das blatt drehen und wenden wie ich will komme jedoch auf keinen grünen zweig bitte um hilfe!!!

[mm] \wurzel{x}-2:\wurzel{x}+1=\wurzel{x}-1:\wurzel{x}+3 [/mm]

ich habe keine ahnung wie ich das rechnen soll!!!

bin verzweifelt

Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt



        
Bezug
wurzelgleichungen: der Anfang
Status: (Antwort) fertig Status 
Datum: 19:33 Mi 23.11.2005
Autor: Herby

Hallo Bjoern,

> hey leute ich kann das blatt drehen und wenden wie ich will
> komme jedoch auf keinen grünen zweig bitte um hilfe!!!

was hast du denn bisher unternommen? Wenn du schon einmal einen Ansatz schreiben würdest, könnten wir gezielter helfen :-)
  

> [mm]\wurzel{x}-2:\wurzel{x}+1=\wurzel{x}-1:\wurzel{x}+3[/mm]
>  
> ich habe keine ahnung wie ich das rechnen soll!!!
>  
> bin verzweifelt

nana, ist einfacher als du glaubst: Multipliziere die Gleichung mit [mm] (\wurzel{x}+1) [/mm] und [mm] (\wurzel{x}+3). [/mm]

Dann ausmultiplizieren und dann meldest du dich wieder, ok.

Wenn es dabei Probleme gibt, natürlich auch früher!


Zudem lautet die Gleichung doch so: [mm] (\wurzel{x}-2):(\wurzel{x}+1)=(\wurzel{x}-1):(\wurzel{x}+3) [/mm] oder?

Sonst klappt das natürlich nicht - wegen Punkt vor Strich ;-)

Liebe Grüße
Herby

Bezug
        
Bezug
wurzelgleichungen: Lösung
Status: (Antwort) fertig Status 
Datum: 11:42 So 04.12.2005
Autor: Mathe-ist-schwer

( [mm] \wurzel{x} [/mm] -2 ) : ( [mm] \wurzel{x} [/mm] +1 ) = ( [mm] \wurzel{x} [/mm] -1 ) : (  [mm] \wurzel{x} [/mm] +3 )

So am Besten du machst erstmal die Brüche weg:

( [mm] \wurzel{x} [/mm] -2 ) * (  [mm] \wurzel{x} [/mm] +3 ) = ( [mm] \wurzel{x} [/mm] +1 ) *  ( [mm] \wurzel{x} [/mm] -1 )

Damit die Aufgabe nicht so schwer aussieht. machst du nun folgenden Trick:

Du weißt ja das   [mm] \wurzel{x} [/mm]  irgendeine Zahl als Ergebniss hat, du weißt nur noch nicht welche, also nennst du sie einfach U (für unbekannte Zahl)

Also sagst du  [mm] \wurzel{x} [/mm] = u

Diene Aufgabe sieht nun so aus:

( u - 2 ) * ( u + 3) = ( u - 1 ) * ( u +1 )

(du hast also nun  ein undort stehen wo vorher  [mm] \wurzel{x} [/mm] stand )

nun multiplizierst du aus:

[mm] u^{2} [/mm] +3u - 2u - 6 =  [mm] u^{2} [/mm] + u - u - 1                 Rechenbefehl:  -  [mm] u^{2} [/mm]

3u - 2u - 6 = u - u - 1

1u -6 = -1                             Rechenbefehl: +6

u = 5

Noch nicht ganz fertig, da wir ja oben gesagt haben:

u =  [mm] \wurzel{x} [/mm]

u = 5

5 =  [mm] \wurzel{x} [/mm]

Nun nimmst du von der Gleichung das Quadrat um die Wurzel wegzubekommen:

[mm] 5^{2} [/mm] = [mm] (\wurzel{x})^{2} [/mm]

25 = x
--------




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 5-7"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de