www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - wurzelkriterium
wurzelkriterium < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

wurzelkriterium: erklärung
Status: (Frage) beantwortet Status 
Datum: 23:17 Fr 08.02.2008
Autor: howtoadd

hallo an alle...

habe mir gerade das wurzelkriterium für die reihen angeschaut... aber habe es noch nicht ganz verstanden, könnt ihr mir bitte sagen wie es geht?

und zwar:
[mm] \summe_{n=1}^{\infty} 3^\bruch{n}{2} 2^1^-^n [/mm]

meine schritte:
[mm] \limes_{n\rightarrow\infty} [/mm] sup [mm] \wurzel[2]{3^n} *\limes_{n\rightarrow\infty} [/mm] sup [mm] \bruch{1}{2^1^+^n} [/mm]

ich bin mir sehr unsicher.... kann mir bitte jemand helfen?

danke um alle bemühungen

ich habe diese frage in keinem anderen forum gestellt.

        
Bezug
wurzelkriterium: Antwort
Status: (Antwort) fertig Status 
Datum: 23:39 Fr 08.02.2008
Autor: Gogeta259

Hi howtoadd,

das Wurzelkriterium hast du nicht ganz verstanden wie mir scheint.

Sei [mm] \summe_{n=1}^{\infty}a_n [/mm] vorgegeben:
Diese summe konvergiert dann wenn man ab einem bestimmtem n eine Zahl q <1 finden kan mit n.wurzel aus [mm] a_n Sie divergiert wenn ab einem bestimmtem n man eine zahl p finden kann mit n.Wurzel [mm] a_n> [/mm] p>1
Bei deiner Aufgabe:
Wir ziehen die n.wurzel von deinem Summanden und derhalten:
[mm] 3^{1/2}*2^{1/n-1}=0,5*\wurzel{3}*2^{1/n}<0,9*2^{1/n}<0,9*1,072<0,9648=q [/mm] ==> folglich ist die Reihe nach dem Wurzelkriterium konvergent.

die erste ungleichung entsteht durch [mm] 0,5*\wurzel{3} \approx [/mm] 0,866<0,9
die zweite ungleichung folgt durch [mm] 2^{1/n}<1,072 [/mm]  für n>10 (einfach mit taschenrechner bestimmt.

Ich hoffe ich hab nichts versemmelt bei meinen abschätzungen.

Bezug
                
Bezug
wurzelkriterium: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:44 Fr 08.02.2008
Autor: howtoadd

danke, aber ich komm damit nicht zurecht....

wie bist du denn plötzlich auf [mm] 2^\bruch{1}{n} [/mm] gekommen??? es war ja [mm] 2^1^-^n.... [/mm] ???


Bezug
                        
Bezug
wurzelkriterium: Antwort
Status: (Antwort) fertig Status 
Datum: 23:50 Fr 08.02.2008
Autor: Gogeta259

Ich hab doch die n.Wurzel gezogen.
[mm] (2^{1-n})^{1/n}=2^{\bruch{1-n}{n}}=2^{1/n-1}=2^{-1}*2^{1/n}=0,5*2^{1/n} [/mm]

Des waren einfach nur die Potenzgesetze. und 2^-1=0,5

Bezug
                                
Bezug
wurzelkriterium: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:57 Fr 08.02.2008
Autor: howtoadd

danke, dass du mir das in so kleinen schritten nochmal gezeigt hast :-)



Bezug
                                        
Bezug
wurzelkriterium: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:01 Sa 09.02.2008
Autor: Gogeta259

Hast du es jetzt verstanden?
Beim Wurzelkriterium ziehst du erst die n.Wurzel von deinem Summanden, dann versuchst du ihn abzuschätzen nach oben(konvergenz) oder nach unten(divergenz) (was du vermutest ist natürlich entscheident).

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de