www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - x^2y'' + 3xy' + 5y = x
x^2y'' + 3xy' + 5y = x < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

x^2y'' + 3xy' + 5y = x: Korrektur
Status: (Frage) beantwortet Status 
Datum: 13:24 So 18.10.2009
Autor: GreatBritain

Aufgabe
$$ y(x) = [mm] x^2 \frac{d^2y}{dx^2} [/mm] + [mm] 3x\frac{dy}{dx} [/mm] + 5y = x $$
Homogene & Allgemeine Lösung sowie Partikuläre Lösung für $y(1) = y'(1) = 0$

Da ich mir mit DGL's immer noch etwas unsicher bin wäre es super, wenn mal jemand über meine Lösung drübergucken und evtl. verbessern könnte.

Homogene Lösung:

[mm] $m^2 [/mm] + 3m + 5 = 0 [mm] \Rightarrow m_{1,2} [/mm] = [mm] \frac{1}{2} [/mm] (-3 [mm] \pm i\sqrt{11})$\\ [/mm]
[mm] $\Rightarrow x^{m_{1,2}} [/mm] = [mm] x^{-\frac{3}{2}} \cdot x^{\pm \frac{i}{2} \sqrt{11}} [/mm] = [mm] x^{-\frac{3}{2}} \cdot \exp((\pm \frac{\sqrt{11}}{2} \ln [/mm] x) i)  [mm] $\\ [/mm]
Darauf die Euler-Formel angewendet: [mm] \\ [/mm]
[mm] $x^{m_{1,2}} [/mm] = [mm] x^{-\frac{3}{2}} \cdot [/mm] ( [mm] \cos (\frac{\sqrt{11}}{2} \ln [/mm] x) [mm] \pm [/mm] i [mm] \sin (\frac{\sqrt{11}}{2} \ln [/mm] x))$

$$ [mm] \Rightarrow y_h [/mm] = [mm] x^{-\frac{3}{2}} \cdot [/mm] ((A [mm] \cos (\frac{\sqrt{11}}{2} \ln [/mm] x) + B [mm] \sin (\frac{\sqrt{11}}{2} \ln [/mm] x)) $$

Allgemeine Lösung:

$y = [mm] Cx\ln [/mm] x;~ y' = [mm] C\ln [/mm] x + C;~ y'' = [mm] \frac{C}{x}$\\ [/mm]
[mm] $\Rightarrow [/mm] y(x) = [mm] x^2 \cdot \frac{C}{x} [/mm] + 3x [mm] \cdot (C\ln [/mm] x + C) + [mm] 5\cdot Cx\ln [/mm] x = Cx + [mm] 3Cx\ln [/mm] x + 3Cx + [mm] 5Cx\ln [/mm] x = 4Cx + [mm] 8Cx\ln [/mm] x = [mm] x$\\ [/mm]
Also $C = [mm] \frac{1}{4 + 8\ln x}$ [/mm]
$$ y = [mm] x^{-\frac{3}{2}} \cdot [/mm] ((A [mm] \cos (\frac{\sqrt{11}}{2} \ln [/mm] x) + B [mm] \sin (\frac{\sqrt{11}}{2} \ln [/mm] x)) + [mm] \frac{1}{4 + 8\ln x}$$ [/mm]

Das ganze soll jetzt noch das Anfangswertproblem lösen: [mm] \\ [/mm]
$y(1) = A + [mm] \frac{1}{4} [/mm] = 0 [mm] \Rightarrow [/mm] A = [mm] -\frac{1}{4}$\\ [/mm]
$y'(x) = [mm] -\frac{3}{2} x^{-\frac{5}{2}} \cdot [/mm] ((A [mm] \cos (\frac{\sqrt{11}}{2} \ln [/mm] x) + B [mm] \sin (\frac{\sqrt{11}}{2} \ln [/mm] x)) + [mm] x^{-\frac{3}{2}} \cdot [/mm] ((-A [mm] \sin (\frac{\sqrt{11}}{2} \ln [/mm] x) [mm] \frac{1}{x} [/mm] + B [mm] \cos (\frac{\sqrt{11}}{2} \ln [/mm] x) [mm] \frac{1}{x}) [/mm] - [mm] \frac{8x^{-1}}{(4+8\ln x)^2}$ \\ [/mm]
$y'(1) = [mm] -\frac{3}{2} \cdot [/mm] 1 [mm] \cdot [/mm] (A+0) + 1 [mm] \cdot [/mm] (0+B) - [mm] \frac{8}{16} [/mm] = [mm] -\frac{3}{2}A [/mm] + B - [mm] \frac{8}{16} [/mm] = [mm] -\frac{3}{8} [/mm] + B - [mm] \frac{4}{8} [/mm] = 0 [mm] \Rightarrow [/mm] B = [mm] \frac{7}{8}$\\ [/mm]

Damit hätten wir als Lösung der Aufgabe:
$$y(x) = [mm] x^{-\frac{3}{2}} \cdot ((\frac{1}{4} \cos (\frac{\sqrt{11}}{2} \ln [/mm] x) + [mm] \frac{7}{8} \sin (\frac{\sqrt{11}}{2} \ln [/mm] x))$$

Vielen Dank, Gruß GB

        
Bezug
x^2y'' + 3xy' + 5y = x: Antwort
Status: (Antwort) fertig Status 
Datum: 16:06 So 18.10.2009
Autor: MathePower

Hallo GreatBritain,

> [mm]y(x) = x^2 \frac{d^2y}{dx^2} + 3x\frac{dy}{dx} + 5y = x[/mm]
>  
> Homogene & Allgemeine Lösung sowie Partikuläre Lösung
> für [mm]y(1) = y'(1) = 0[/mm]
>  Da ich mir mit DGL's immer noch
> etwas unsicher bin wäre es super, wenn mal jemand über
> meine Lösung drübergucken und evtl. verbessern könnte.
>  
> Homogene Lösung:
>  
> [mm]m^2 + 3m + 5 = 0 \Rightarrow m_{1,2} = \frac{1}{2} (-3 \pm i\sqrt{11})[/mm][mm] \\[/mm]
>  
> [mm]\Rightarrow x^{m_{1,2}} = x^{-\frac{3}{2}} \cdot x^{\pm \frac{i}{2} \sqrt{11}} = x^{-\frac{3}{2}} \cdot \exp((\pm \frac{\sqrt{11}}{2} \ln x) i) [/mm][mm] \\[/mm]
>  
> Darauf die Euler-Formel angewendet: [mm]\\[/mm]
>  [mm]x^{m_{1,2}} = x^{-\frac{3}{2}} \cdot ( \cos (\frac{\sqrt{11}}{2} \ln x) \pm i \sin (\frac{\sqrt{11}}{2} \ln x))[/mm]
>  
> [mm]\Rightarrow y_h = x^{-\frac{3}{2}} \cdot ((A \cos (\frac{\sqrt{11}}{2} \ln x) + B \sin (\frac{\sqrt{11}}{2} \ln x))[/mm]


Hier funktioniert der Ansatz [mm]y=e^{mx}[/mm] nicht.

Dies ist eine []Eulersche Differentialgleichung,
deren homogene Lösung mit dem Ansatz [mm]y=x^{m}[/mm] gelöst werden kann.


>  
> Allgemeine Lösung:
>  
> [mm]y = Cx\ln x;~ y' = C\ln x + C;~ y'' = \frac{C}{x}[/mm][mm] \\[/mm]
>  
> [mm]\Rightarrow y(x) = x^2 \cdot \frac{C}{x} + 3x \cdot (C\ln x + C) + 5\cdot Cx\ln x = Cx + 3Cx\ln x + 3Cx + 5Cx\ln x = 4Cx + 8Cx\ln x = x[/mm][mm] \\[/mm]
>  
> Also [mm]C = \frac{1}{4 + 8\ln x}[/mm]
>  [mm]y = x^{-\frac{3}{2}} \cdot ((A \cos (\frac{\sqrt{11}}{2} \ln x) + B \sin (\frac{\sqrt{11}}{2} \ln x)) + \frac{1}{4 + 8\ln x}[/mm]
>  
> Das ganze soll jetzt noch das Anfangswertproblem lösen:
> [mm]\\[/mm]
>  [mm]y(1) = A + \frac{1}{4} = 0 \Rightarrow A = -\frac{1}{4}[/mm][mm] \\[/mm]
>  
> [mm]y'(x) = -\frac{3}{2} x^{-\frac{5}{2}} \cdot ((A \cos (\frac{\sqrt{11}}{2} \ln x) + B \sin (\frac{\sqrt{11}}{2} \ln x)) + x^{-\frac{3}{2}} \cdot ((-A \sin (\frac{\sqrt{11}}{2} \ln x) \frac{1}{x} + B \cos (\frac{\sqrt{11}}{2} \ln x) \frac{1}{x}) - \frac{8x^{-1}}{(4+8\ln x)^2}[/mm]
> [mm]\\[/mm]
>  [mm]y'(1) = -\frac{3}{2} \cdot 1 \cdot (A+0) + 1 \cdot (0+B) - \frac{8}{16} = -\frac{3}{2}A + B - \frac{8}{16} = -\frac{3}{8} + B - \frac{4}{8} = 0 \Rightarrow B = \frac{7}{8}[/mm][mm] \\[/mm]
>  
> Damit hätten wir als Lösung der Aufgabe:
>  [mm]y(x) = x^{-\frac{3}{2}} \cdot ((\frac{1}{4} \cos (\frac{\sqrt{11}}{2} \ln x) + \frac{7}{8} \sin (\frac{\sqrt{11}}{2} \ln x))[/mm]
>  
> Vielen Dank, Gruß GB



Gruss
MathePower

Bezug
                
Bezug
x^2y'' + 3xy' + 5y = x: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:25 So 18.10.2009
Autor: GreatBritain


> Hallo GreatBritain,
>  
> > [mm]y(x) = x^2 \frac{d^2y}{dx^2} + 3x\frac{dy}{dx} + 5y = x[/mm]
>  
> >  

> > Homogene & Allgemeine Lösung sowie Partikuläre Lösung
> > für [mm]y(1) = y'(1) = 0[/mm]
>  >  Da ich mir mit DGL's immer noch
> > etwas unsicher bin wäre es super, wenn mal jemand über
> > meine Lösung drübergucken und evtl. verbessern könnte.
>  >  
> > Homogene Lösung:
>  >  
> > [mm]m^2 + 3m + 5 = 0 \Rightarrow m_{1,2} = \frac{1}{2} (-3 \pm i\sqrt{11})[/mm][mm] \\[/mm]
>  
> >  

> > [mm]\Rightarrow x^{m_{1,2}} = x^{-\frac{3}{2}} \cdot x^{\pm \frac{i}{2} \sqrt{11}} = x^{-\frac{3}{2}} \cdot \exp((\pm \frac{\sqrt{11}}{2} \ln x) i)[/mm][mm] \\[/mm]
>  
> >  

> > Darauf die Euler-Formel angewendet: [mm]\\[/mm]
>  >  [mm]x^{m_{1,2}} = x^{-\frac{3}{2}} \cdot ( \cos (\frac{\sqrt{11}}{2} \ln x) \pm i \sin (\frac{\sqrt{11}}{2} \ln x))[/mm]
>  
> >  

> > [mm]\Rightarrow y_h = x^{-\frac{3}{2}} \cdot ((A \cos (\frac{\sqrt{11}}{2} \ln x) + B \sin (\frac{\sqrt{11}}{2} \ln x))[/mm]
>  
>
> Hier funktioniert der Ansatz [mm]y=e^{mx}[/mm] nicht.
>  
> Dies ist eine
> []Eulersche Differentialgleichung,
> deren homogene Lösung mit dem Ansatz [mm]y=x^{m}[/mm] gelöst
> werden kann.
>  
>

öhm - das habe ich doch aber eigentlich auch gemacht? Die Exponentialfunktion habe ich ja eher verwendet um die imaginäre Potenz "wegzukriegen", unter verwendung $x = [mm] e^{lnx}$, [/mm] und dann die Eulerformel [mm] $e^{ix}= [/mm] cos(x) + i sin(x)$ verwendet. Aber grundsätzlich ist mein Ansatz ja [mm] $y=x^{m_{1,2}} [/mm] = [mm] \ldots$ [/mm]

Ist aber gut möglich, dass meine Rechnung etwas umständlich und daher verwirrend ist...

Gruß GB


> >  

> > Allgemeine Lösung:
>  >  
> > [mm]y = Cx\ln x;~ y' = C\ln x + C;~ y'' = \frac{C}{x}[/mm][mm] \\[/mm]
>  >  
> > [mm]\Rightarrow y(x) = x^2 \cdot \frac{C}{x} + 3x \cdot (C\ln x + C) + 5\cdot Cx\ln x = Cx + 3Cx\ln x + 3Cx + 5Cx\ln x = 4Cx + 8Cx\ln x = x[/mm][mm] \\[/mm]
>  
> >  

> > Also [mm]C = \frac{1}{4 + 8\ln x}[/mm]
>  >  [mm]y = x^{-\frac{3}{2}} \cdot ((A \cos (\frac{\sqrt{11}}{2} \ln x) + B \sin (\frac{\sqrt{11}}{2} \ln x)) + \frac{1}{4 + 8\ln x}[/mm]
>  
> >  

> > Das ganze soll jetzt noch das Anfangswertproblem lösen:
> > [mm]\\[/mm]
>  >  [mm]y(1) = A + \frac{1}{4} = 0 \Rightarrow A = -\frac{1}{4}[/mm][mm] \\[/mm]
>  
> >  

> > [mm]y'(x) = -\frac{3}{2} x^{-\frac{5}{2}} \cdot ((A \cos (\frac{\sqrt{11}}{2} \ln x) + B \sin (\frac{\sqrt{11}}{2} \ln x)) + x^{-\frac{3}{2}} \cdot ((-A \sin (\frac{\sqrt{11}}{2} \ln x) \frac{1}{x} + B \cos (\frac{\sqrt{11}}{2} \ln x) \frac{1}{x}) - \frac{8x^{-1}}{(4+8\ln x)^2}[/mm]
> > [mm]\\[/mm]
>  >  [mm]y'(1) = -\frac{3}{2} \cdot 1 \cdot (A+0) + 1 \cdot (0+B) - \frac{8}{16} = -\frac{3}{2}A + B - \frac{8}{16} = -\frac{3}{8} + B - \frac{4}{8} = 0 \Rightarrow B = \frac{7}{8}[/mm][mm] \\[/mm]
>  
> >  

> > Damit hätten wir als Lösung der Aufgabe:
>  >  [mm]y(x) = x^{-\frac{3}{2}} \cdot ((\frac{1}{4} \cos (\frac{\sqrt{11}}{2} \ln x) + \frac{7}{8} \sin (\frac{\sqrt{11}}{2} \ln x))[/mm]
>  
> >  

> > Vielen Dank, Gruß GB
>
>
>
> Gruss
>  MathePower

Bezug
                        
Bezug
x^2y'' + 3xy' + 5y = x: Antwort
Status: (Antwort) fertig Status 
Datum: 16:32 So 18.10.2009
Autor: MathePower

Hallo GreatBritain,


> > Dies ist eine
> >
> []Eulersche Differentialgleichung,
> > deren homogene Lösung mit dem Ansatz [mm]y=x^{m}[/mm] gelöst
> > werden kann.
>  >  
> >
> öhm - das habe ich doch aber eigentlich auch gemacht? Die


Wenn Du das gemacht hättest,
dann sähe die charakteristische Gleichung so aus:

[mm]m*\left(m-1\right)+3*m+5=0[/mm]

[mm]\gdw m^{2}+2*m+5=0[/mm]


> Exponentialfunktion habe ich ja eher verwendet um die
> imaginäre Potenz "wegzukriegen", unter verwendung [mm]x = e^{lnx}[/mm],
> und dann die Eulerformel [mm]e^{ix}= cos(x) + i sin(x)[/mm]
> verwendet. Aber grundsätzlich ist mein Ansatz ja
> [mm]y=x^{m_{1,2}} = \ldots[/mm]
>  
> Ist aber gut möglich, dass meine Rechnung etwas
> umständlich und daher verwirrend ist...
>  
> Gruß GB
>  


Gruss
MathePower

Bezug
                                
Bezug
x^2y'' + 3xy' + 5y = x: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:03 So 18.10.2009
Autor: GreatBritain

ush - danke, jetzt hab ich verstanden wo der fehler liegt!!
ich werd mich gleich nochmal dran machen!

Bezug
                                        
Bezug
x^2y'' + 3xy' + 5y = x: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:32 So 18.10.2009
Autor: GreatBritain

na, da werden die zahlen ja gleich viel schöner ;-)

Habe jetzt entsprechend substituiert und komme auf die von dir bereits angegebene charak. Gleichung.

Homogene Lösung:

[mm] $m^2 [/mm] + 2m + 5 = 0 [mm] \Rightarrow m_{1,2} [/mm] = -1 [mm] \pm [/mm] 2i [mm] $\\ [/mm]
[mm] $\Rightarrow x^{m_{1,2}} [/mm] = [mm] x^{-1} \cdot x^{\pm 2i} [/mm] = [mm] x^{-1} \cdot \exp((\pm [/mm] 2i ln(x))  [mm] $\\ [/mm]
Darauf die Euler-Formel [mm] angwendet:\\ [/mm]
[mm] $x^{m_{1,2}} [/mm] = [mm] x^{-1} \cdot [/mm] ( [mm] \cos [/mm] (2 [mm] \ln [/mm] x) [mm] \pm [/mm] i [mm] \sin [/mm] (2 [mm] \ln [/mm] x))$

$$ [mm] \Rightarrow y_h [/mm] = [mm] x^{-1} \cdot [/mm] ((A [mm] \cos [/mm] (2 [mm] \ln [/mm] x) + B [mm] \sin [/mm] (2 [mm] \ln [/mm] x)) $$

ok, um nun die partikuläre Lösung zu bekommen würde ich folgenden Ansatz verwenden:
$y = [mm] Cx\ln x;~y'=C\ln [/mm] x + C; y'' = [mm] \frac{C}{x}$ [/mm]

Kann ich damit weiter machen oder bin ich dann schon wieder auf dem falschen Weg...?

Danke & Gruß, GB

Bezug
                                                
Bezug
x^2y'' + 3xy' + 5y = x: Antwort
Status: (Antwort) fertig Status 
Datum: 18:26 So 18.10.2009
Autor: MathePower

Hallo GreatBritain,

> na, da werden die zahlen ja gleich viel schöner ;-)
>  
> Habe jetzt entsprechend substituiert und komme auf die von
> dir bereits angegebene charak. Gleichung.
>  
> Homogene Lösung:
>  
> [mm]m^2 + 2m + 5 = 0 \Rightarrow m_{1,2} = -1 \pm 2i[/mm][mm] \\[/mm]
>  
> [mm]\Rightarrow x^{m_{1,2}} = x^{-1} \cdot x^{\pm 2i} = x^{-1} \cdot \exp((\pm 2i ln(x)) [/mm][mm] \\[/mm]
>  
> Darauf die Euler-Formel [mm]angwendet:\\[/mm]
>  [mm]x^{m_{1,2}} = x^{-1} \cdot ( \cos (2 \ln x) \pm i \sin (2 \ln x))[/mm]
>  
> [mm]\Rightarrow y_h = x^{-1} \cdot ((A \cos (2 \ln x) + B \sin (2 \ln x))[/mm]


[ok]


>  
> ok, um nun die partikuläre Lösung zu bekommen würde ich
> folgenden Ansatz verwenden:
>  [mm]y = Cx\ln x;~y'=C\ln x + C; y'' = \frac{C}{x}[/mm]
>  
> Kann ich damit weiter machen oder bin ich dann schon wieder
> auf dem falschen Weg...?


Nun, da die Störfunktion eine Polynom ersten Grades ist,
wähle hier den Ansatz: [mm]y_{p}=A*x+B[/mm]


>  
> Danke & Gruß, GB


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de