www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algebra" - x=1 ist eine leer Menge?
x=1 ist eine leer Menge? < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

x=1 ist eine leer Menge?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:11 Mi 19.09.2007
Autor: Christian_Wansart

Aufgabe
[mm] \bruch{3-x}{x+1} [/mm] + [mm] \bruch{x+2}{x-1} [/mm] = [mm] \bruch{9}{x²-1} [/mm]

Guten Abend,

Kurze Vorgeschichte
Bevor ich nun anfange meine Frage zu stellen, ist vielleicht zu berücksichtigen, dass mir einiges an Background-Wissen fehlt.
Ich habe es geschafft von der Hauptschule auf ein Gymnasium zu kommen. Nun fehlt mir noch ein wenig Wissen, damit ich mithalten kann. Leider steht nicht alles in meinen Büchern und im Internet konnte ich auch nicht viel dazu finden. Ich wäre also sehr dankbar für Tipps zu Mathematik (noch bessser: gute Algebra) Lektüren.

Das Problem
Wir schreiben am Freitag eine kurzen Test, aber ich habe noch ein kleines Problem. Nun habe ich die Gleichung auf x = 1 gebracht, aber auf meinem Zettel, wo auch die Lösungen drauf sind, steht dass das Ergebnis, eine leere Menge ist. Ist x = 1 eine leere Menge?

Hier einmal meine Gleichung und die einzelnen Schritt zum nachvollziehen:
[mm] \bruch{3-x}{x+1} [/mm] + [mm] \bruch{x+2}{x-1} [/mm] = [mm] \bruch{6}{x²-1} [/mm]

[mm] \gdw \bruch{(3-x)(x-1) + (x+2)(x+1)}{x²-1} [/mm] = [mm] \bruch{6}{x²-1} [/mm]

[mm] \gdw [/mm] (3-x)(x-1) + (x+2)(x+1) = 6

[mm] \gdw [/mm] 3x - 3 - x² + x + x² + x + 2x + 2 = 6

[mm] \gdw [/mm] 7x -1 = 6

[mm] \gdw [/mm] 7x = 7

[mm] \gdw [/mm] x = 1

Habe ich nun etwas falsch?
Danke

           -Christian


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
x=1 ist eine leer Menge?: Antwort
Status: (Antwort) fertig Status 
Datum: 21:24 Mi 19.09.2007
Autor: schachuzipus

Hallo Christian,

deine Rechnung ist im Prinzip ganz richtig, in der Ausgansaufgabe muss aber wohl rechts im Zähler ne 6 statt ner 9 stehen, aber das ist ja aus deiner nachfolgenden Rechnung ersichtlich.

Du hast also $x=1$ rausbekommen.

Schau dir noch mal die Ausgangsbrüche an, dann sollte dir sofort was auffallen.

Die Bruchgleichung ist nämlich für $x=1$ gar nicht definiert, also kann $x=1$ als Lösung auch nicht in Frage kommen.

Nehmen wir mal an, das Teilen durch 0 wäre ok und die Bruchgleichung wäre für $x=1$ definiert.

Dann hast du im ersten Schritt u.a. mit (x-1) = 0 multipliziert, was du nicht tun darfst, da du die Lösungsmenge sonst verändern würdest.

Nimm zB. die Gleichung $2x=4$

Die hat die Lösung $x=2$

Mal angenommen, du würdest die Glcichung $2x=4$ mit 0 multiplizieren, das würde zu der Gleichung $0=0$ die für alle $x$ wahr ist.

Also merke: Multiplikation mit 0 ist gefährlich ;-)

Da nun deine Gleichung für $x=1$ nicht definiert ist und $x=1$ einzige hypothetische Lösung ist, ist die Lösungsmenge leer.

Hoffe, das war nicht zu wirr ;-)


LG

schachuzipus



Bezug
                
Bezug
x=1 ist eine leer Menge?: Korrektur
Status: (Frage) beantwortet Status 
Datum: 21:33 Mi 19.09.2007
Autor: Christian_Wansart

Danke für deine Antwort, aber ich muss sagen, dass ich mich bei "Aufgabe" vertan habe. Es ist nicht [mm] \bruch{9}{x²-1} [/mm] sondern [mm] \bruch{6}{x²-1}, [/mm] so wie ich auch gerechnet hatte. Es tut mir wirklich Leid, dass ich mich dort vertan habe...

Ergibt es denn so einen Sinn?
Danke


Bezug
                        
Bezug
x=1 ist eine leer Menge?: Antwort
Status: (Antwort) fertig Status 
Datum: 21:39 Mi 19.09.2007
Autor: Blech


> Danke für deine Antwort, aber ich muss sagen, dass ich mich
> bei "Aufgabe" vertan habe. Es ist nicht [mm]\bruch{9}{x²-1}[/mm]
> sondern [mm]\bruch{6}{x²-1},[/mm] so wie ich auch gerechnet hatte.
> Es tut mir wirklich Leid, dass ich mich dort vertan
> habe...
>  
> Ergibt es denn so einen Sinn?
>  Danke

Bleibt gleich.

Wenn Du eine Gleichung mit etwas multiplizierst oder durch etwas teilst, dann immer unter der Bedingung "falls der Term nicht 0 ist".

Du hast bei Dir mit [mm]x^2-1[/mm] multipliziert, aber bist dann auf die Lösung x=1 gekommen. Aber die Lösung ist nicht zulässig, weil [mm]1^2-1=0[/mm].


Bezug
                                
Bezug
x=1 ist eine leer Menge?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:55 Mi 19.09.2007
Autor: Christian_Wansart

Ja, stimmt. Ich würde jetzt sagen "x ist ja eigentlich nicht anderes als 1 * x" aber lassen wir das mal an Rande, da ich öfters irgendetwas sage, was am Ende dann doch richtig gemeint war, aber falsch formuliert.

Also ist an sich, mein Ergebnis richtig? (Ich frage nur aus sicherheit, da ich in Sachen Algebra noch einiges zu lernen habe, und ich es aus euren Antworten leider nicht ersehen kann.)


Vielen Dank

Bezug
                                        
Bezug
x=1 ist eine leer Menge?: Antwort
Status: (Antwort) fertig Status 
Datum: 21:59 Mi 19.09.2007
Autor: schachuzipus

Hallo nochmal,

wie ich oben schon schrieb, [mm] \underline{kann} [/mm] dein Ergebnis $x=1$ doch gar nicht richtig sein, da für $x=1$ die ganze Sache gar nicht definiert ist.

Was soll denn dann [mm] \frac{6}{x^2-1}=\frac{6}{1^2-1}=\frac{6}{0} [/mm] sein?

Es ist [mm] $\IL=\{\}$ [/mm] also leere Menge, dh. es gibt KEINE Lösung

LG

schachuzipus

Bezug
                                        
Bezug
x=1 ist eine leer Menge?: Antwort
Status: (Antwort) fertig Status 
Datum: 22:07 Mi 19.09.2007
Autor: Blech

[mm]\bruch{(3-x)(x-1) + (x+2)(x+1)}{x²-1} = \bruch{6}{x²-1} \gdw (3-x)(x-1) + (x+2)(x+1) = 6 [/mm]

Diese Äquivalenz, und damit der Rest Deiner Rechnung, gilt nur unter der Bedingung [mm]x \neq \pm 1[/mm].

Dein Ergebnis ist also "x=1 unter der Bedingung [mm] x\neq [/mm] 1". Und das erfüllt kein x.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de