x + 1/x >= 2 < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Hallo
ich soll zeigen, dass
[mm] (x_1y_1 [/mm] + [mm] x_2y_2)^2 \le (x_1^2 [/mm] + [mm] x_2^2)(y_1^2 [/mm] + [mm] y_2^2)
[/mm]
Jetzt hab ich so weitergerechnet:
[mm] x_1^2 y_1^2 [/mm] + [mm] 2x_1y_1x_2y_2 [/mm] + [mm] x_2^2 y_2^2 \le x_1^2 y_1^2 [/mm] + [mm] x_1^2 y_2^2 [/mm] + [mm] x_2^2 y_1^2 [/mm] + [mm] x_2^2 y_2^2
[/mm]
[mm] 2x_1 y_1 x_2 y_2 \le x_1^2 y_2^2 [/mm] + [mm] x_2^2 y_1^2
[/mm]
2 [mm] \le \bruch{x_1y_2}{x_2y_1} [/mm] + [mm] \bruch{x_2y_1}{x_1y_2}
[/mm]
An sich klingt es auf jeden Fall irgendwie logisch, dass eine Zahl x + [mm] \bruch{1}{x} \ge [/mm] 2, auf jeden Fall, solange x > 0. Aber wie könnte man das zeigen? Das Problem ist außerdem, dass in der Aufgabenstellung steht [mm] "x_1, x_2, y_1, y_2 \in \IR".
[/mm]
Könnt Ihr mir weiterhelfen?
LG
Martin
|
|
|
|
Hallo Martin,
der Ansatz war richtig, alles mal auszumultiplizieren, ab hier würde ich anders fortsetzen:
[mm] $2x_1 y_1 x_2 y_2 \le x_1^2 y_2^2 +x_2^2y_1^2$ Nun-2x_1 y_1 x_2 y_2 [/mm] auf beiden Seiten
[mm] \gdw 0\le x_1^2 y_2^2 +x_2^2y_1^2-2x_1 y_1 x_2 y_2=x_1^2 y_2^2-2x_1 y_2 x_2 y_1+x_2^2y_1^2=(x_1y_2-x_2y_1)^2
[/mm]
Und das ist wohl wahr, denn rechts steht ein Quadrat
Gruß
schachuzipus
|
|
|
|