www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Ganzrationale Funktionen" - y-Achs.-Abschnitt
y-Achs.-Abschnitt < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

y-Achs.-Abschnitt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:16 Sa 22.03.2008
Autor: Giraffe

Moin Jungs und Mädels,
ich war bislang immer davon ausgegangen, dass der y-Achs.-Abschnitt bei einer Fkt. immer die letzte Zahl ohne dem x ist. Nun bin ich mir da nicht mehr so sicher.
Bei linearen Fkt. ist er das.
Bei quadrat. Fkt. - da komme ich schon ins Schleudern- wenn es einen Öffngs.-Fakt. gibt. Bei f(x) = [mm] x^2 [/mm]  + 9 ist der Schnittpkt. mit der y-Achse bei +9. Klar!
Wenn diese Fkt. besonders gr. oder besonders kl. Öffnungs.-Faktor hätte, hat dieser einen Einfluss auf die +9? Verändert der Öffngs.-Fakt. den y-Achs.-Abschnitt?
Und bei kubischen Fkt. weiß ich nun gar nix mehr.
f(x) = [mm] ax^3 [/mm] + [mm] bx^2 [/mm] + [mm] cx^1 [/mm] + d
Ich dachte bis heute: Der y-Achs.-Abschnitt ist d.
Es wäre schön, wenn das, was ich bisher dachte doch richtig ist. Nämlich, dass immer die Zahl (die keine x-Potenz ist) der y-Achs.-Abschnitt ist.
Für Klärung im voraus schon mal ganz vielen Dank!
Sabine


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
y-Achs.-Abschnitt: Antwort
Status: (Antwort) fertig Status 
Datum: 20:25 Sa 22.03.2008
Autor: MathePower

Hallo Giraffe,

> Moin Jungs und Mädels,
>  ich war bislang immer davon ausgegangen, dass der
> y-Achs.-Abschnitt bei einer Fkt. immer die letzte Zahl ohne
> dem x ist. Nun bin ich mir da nicht mehr so sicher.
>  Bei linearen Fkt. ist er das.
>  Bei quadrat. Fkt. - da komme ich schon ins Schleudern-
> wenn es einen Öffngs.-Fakt. gibt. Bei f(x) = [mm]x^2[/mm]  + 9 ist
> der Schnittpkt. mit der y-Achse bei +9. Klar!
>  Wenn diese Fkt. besonders gr. oder besonders kl.
> Öffnungs.-Faktor hätte, hat dieser einen Einfluss auf die
> +9? Verändert der Öffngs.-Fakt. den y-Achs.-Abschnitt?
>  Und bei kubischen Fkt. weiß ich nun gar nix mehr.
>  f(x) = [mm]ax^3[/mm] + [mm]bx^2[/mm] + [mm]cx^1[/mm] + d
>  Ich dachte bis heute: Der y-Achs.-Abschnitt ist d.
>  Es wäre schön, wenn das, was ich bisher dachte doch
> richtig ist. Nämlich, dass immer die Zahl (die keine
> x-Potenz ist) der y-Achs.-Abschnitt ist.
>  Für Klärung im voraus schon mal ganz vielen Dank!

In der Tat ist bei Polynomfunktionen das Absolutglied der y-Achsenabschnitt, denn der Schnitt mit der y-Achse besagt ja gerade x=0.

Der y-Achsenabschnitt ist der Schnitt einer Funktion (hier: einer Polynomfunktion) mit der y-Achse, also der Wert der Funktion an der Stelle 0.

>  Sabine
>  
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

Gruß
MathePower

Bezug
                
Bezug
y-Achs.-Abschnitt: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:38 Sa 22.03.2008
Autor: Giraffe

also hatte ich doch recht: Das letzte Glied ist immer der Schnittpkt. mit der Y-Achse.
Es hängt hier ein von irgendwoher abgefallen Post-it-Zettel, auf dem steht:
einfach x=0 setzen u. f(0) = ausrechnen.
Ich bin nicht darauf gekommen, dass es GENAU DAS Thema ist.
Aber mir sei verziehen, da ich noch kein alter Mathe-Hase bin.
Danke f. die schnelle u. einfache Antw.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de