www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Vektoren" - zeichnen eines Ellipsoid
zeichnen eines Ellipsoid < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

zeichnen eines Ellipsoid: Tipp
Status: (Frage) beantwortet Status 
Datum: 19:49 Mi 22.10.2014
Autor: sabatiel

Aufgabe
Man skizziere die folgenden Mengen und versuche ihnen einen Namen zu geben:

[mm] M_{1}:= [/mm] { (x, y, z) [mm] \in \IR^{3} [/mm] : [mm] \bruch{1}{4} \*(x-3)^{2} [/mm] + 9 [mm] \*(y+2)^{2} +\bruch{z^{2}}{25}= [/mm] 4 }

Hi,

Mir ist zuerst aufgefallen das es sich hierbei um eine Kugelgleichung handelt und zwar einer Kugel deren Mittelpunkt auf den Koordinaten (3,-2,0) liegt.

Danach habe ich die Kugelgleichung durch Verwendung neuer Konstante (a,b,c) auf die Einheitskugel form gebracht.
  
     [mm] a=\bruch{1}{4} \*(x-3)^{2} [/mm]    <=> x= 2a +3
( dasselbe für y,z)
sodass ich folgendes erhalte :

[mm] M_{1}:= [/mm] { (x, y, z) [mm] \in \IR^{3} [/mm] : [mm] a^{2}+b^{2}+c^{2}=4 [/mm] und (x, y, z) = [mm] 2\*x [/mm] + 3, [mm] \bruch{y}{3} [/mm] - 2, 5c }

Soweit so gut nur habe ich jetzt das Problem, dass ich keine Ahnung habe wie ich die Halbachsen berechnen soll . Ich weß nur, dass die Halbachsen 4,  [mm] \bruch{2}{3} [/mm] , 10 beträgt.

Es wäre daher nice wenn mir jemand helfen könnte.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.





        
Bezug
zeichnen eines Ellipsoid: Antwort
Status: (Antwort) fertig Status 
Datum: 20:14 Mi 22.10.2014
Autor: andyv

Hallo,

das, was du gemacht hast, ist nicht zielführend und z.T. falsch.

dividiere die Gleichung $ [mm] \bruch{1}{4} *(x-3)^{2} [/mm]  +  9 [mm] \cdot (y+2)^{2} +\bruch{z^{2}}{25}= [/mm] $ 4 durch 4 und du kannst die Halbachsen direkt ablesen. (Was sind die Halbachsen eines Ellipsoids, das durch [mm] $\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1$, $abc\neq [/mm] 0$, gegeben ist?)

Liebe Grüße

Bezug
                
Bezug
zeichnen eines Ellipsoid: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:41 Mi 22.10.2014
Autor: sabatiel

Vielen Dank für die schnelle Antwort.



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de