www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - zerfallsprozesse
zerfallsprozesse < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

zerfallsprozesse: aufgabe10
Status: (Frage) beantwortet Status 
Datum: 16:43 Sa 02.12.2006
Autor: a-l18

Aufgabe
bei einem radioaktiven zerfall gilt für die masse m der zerfallenden substanz m(t)=e^(kt+b) (m(t) in g, t in tagen nach beobachtungsbeginn).
c)weisen sie nach, dass von der zu einem beliebigen zeitpunkt vorhandenen masse dieser radioaktiven substanz nach 14 tagen (3/4) zerfallen ist.

hallo,
wie kann ich das nachweisen?
ich habe für t 14 tage eingesetzt, das ergebnis ist5, also ein viertel der masse, die zu begionn da war.
das ist aber leider noch kein beweis , dass das für jeden beliebigen zeitpunkt gilt oder?
kann ich da irgendwas machen, z.b. m(x+14)=???
ich weiß nicht weiter.

        
Bezug
zerfallsprozesse: Antwort
Status: (Antwort) fertig Status 
Datum: 21:47 Sa 02.12.2006
Autor: chrong7

im prinzip genuegt es, einfach t=14 einzusetzen, weil bei einem zerfallsprozess (bei jeder form von exponentiellem wachstum) in gleich langen zeitraeumen immer das gleiche passiert; wenn nach den ersten 14 tagen noch 75% da sind, dann sind auch am 34. tag noch 75% von dem da, was am 20. tag da war usw.
das ist aber vermutlich nicht die antwort, die lehrer gerne lesen. man kann diese unabhaengigkeit vom startzeitpunkt wie folgt nachweisen:
der startpunkt der 14-tages-periode ist beliebig; wir bezeichnen ihn daher mit der variable t0.
zum zeitpunkt t0 sind von der urspruenglichen masse noch
m(t0) gramm vorhanden.
14 tage spaeter sind es entsprechend m(t0+14).
um den prozentsatz zu bestimmen (wie viel prozent der urspruenglichen masse sind nach 14 tagen noch da) muessen wir den quotienten m(t0+14)/m(t0) bestimmen.
verwenden der formel fuer m(t) und rechenregeln fuer die exponentialfunktion fuehrt auf:
[mm] \bruch{m(t0+14)}{m(t0)} [/mm] =
[mm] \bruch{e^{k(t0+14)+b}}{e^{k*t0+b}}= [/mm]
[mm] \bruch{e^{k*t0}e^{k*14}e^{b}}{e^{k*t0}e^{b}} [/mm] =
[mm] e^{14k} [/mm]
jetzt haengt's natuerlich von der zerfallskonstante k ab, welchen wert man hier bekommt. wenn du den entsprechenden wert einsetzt (hab ich bei der aufgabe nicht gefunden), sollte [mm] e^{14k} \cong [/mm] 0.25 herauskommen.
im prinzip hat man damit die von mir behauptete unabhaengigkeit vom startzeitpunkt mathematisch nachgewiesen (die faktoren, die t0 enthalten, heben sich stets auf; unabhaengig davon, welchen wert t0 hat).

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de