www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Abbildungen" - zu Basis ergänzen
zu Basis ergänzen < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

zu Basis ergänzen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:30 Fr 05.02.2010
Autor: Vicky89

Ich habe die Vektoren v1=(0,1,2) und v2=(2,1,0) gegeben und soll zu einer basis ergänzen.
Ich dachte ich muss jetzt zu einer dreiecksmatrix ergänzen :

2   1   0
0   1   2

und wäre dann auf v3=(0,0,1) gekommen. aber in meiner lösung steht, dass es (0,1,0) sein muss.
was mach ich falsch??


lg

        
Bezug
zu Basis ergänzen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:41 Fr 05.02.2010
Autor: schachuzipus

Hallo Vicky,

> Ich habe die Vektoren v1=(0,1,2) und v2=(2,1,0) gegeben und
> soll zu einer basis ergänzen.
>  Ich dachte ich muss jetzt zu einer dreiecksmatrix
> ergänzen :
>  
> 2   1   0
>  0   1   2

üblicherweise stopft man die Vektoren als Spalten in eine Marix, also

[mm] $\pmat{0&2&\vdots\\1&1&\vdots\\2&0&\vdots}$ [/mm]


>  
> und wäre dann auf v3=(0,0,1) gekommen. [ok]

Ja, der tut's!

Wie bist du denn auf diesen Vektor gekommen?

Das wäre ja spannend zu wissen

>  aber in meiner
> lösung steht, dass es (0,1,0) sein muss.

Der tut's auch. Es gibt unendlich viele Vektoren, die es tun. Von daher ist das "muss" natürlich falsch.

Rechne mit deinem gefunden Vektor einfach mal vor, dass die 3 da eine Basis des [mm] $\IR^3$ [/mm] bilden ...

>  was mach ich falsch??

Das kann man ohne deine Rechnung zu sehen nicht sagen, vom Ergebnis her hast du aber einen passenden Vektor "gefunden"

>
> lg

Gruß

schachuzipus

Bezug
                
Bezug
zu Basis ergänzen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:46 Fr 05.02.2010
Autor: Vicky89

ist es im endeffekt egal, ob ich die vektoren als spalten oder zeilen der matrix schreibe?
naja auf (0,0,1) bin ich gekommen, weil ich dachte, man muss die dreiecksform einhalten. das wäre aber mit (0,1,0) nicht der fall? also muss das doch nicht so sein?
das heißt (1,0,0) wäre auch möglich gewesen?!
dann verstehe ich irgendwie nicht so wirklich, wie ich die passenden vektoren für eine basis finden kann.
also mir ist shcon klar, dass sie linear unabhängig sein müssen...

danke übrigens für die antwort ;)

Bezug
                        
Bezug
zu Basis ergänzen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:29 Fr 05.02.2010
Autor: angela.h.b.

Hallo,

wenn ich haarscharf kombiniere, hast Du dies getan:

Du hast die Vektoren als Zeilen in eine Matrix gelegt, diese Matrix auf Zeilenstufenform gebracht (wozu in diesem Fall nichts zu tun war), und dann hast Du Einheitsvektoren so eingeschoben, daß sich eine obere Dreiecksmatrix ergibt. Die eingeschobenen Einheitsvektoren ergänzen die linear unabhängigen Startvektoren zu einer Basis des [mm] \IR^n. [/mm]
Dieses Vorgehen ist richtig.

Ob Du mit den anderen Einheitsvektoren ebenfalls ergänzen kannst, erfährst Du, indem Du jeweils die lineare Unabhängigkeit der drei Vektoren prüfst.
Dazu kannst Du sie nebeneinander in eine Matrix stellen und den Rang der Matrix bestimmen.

Beachte, daß ich schreibe "kannst", nicht: "mußt".
Manchmal gibt es mehrere richtige Wege.

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de