www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitsrechnung" - zufallsgrößen
zufallsgrößen < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

zufallsgrößen: probleme bei aufgabenstellung
Status: (Frage) beantwortet Status 
Datum: 13:16 Mi 19.03.2008
Autor: anfaenger_

Aufgabe
zufallsexperiment: zweimaliges werfen eines laplace tetraeders mit den augenzahlen 1,2,3,4
zufallsgröße X: summe der augenzahlen
zufallsgrößen Y: anzahl der gewürfelten zweien
zufallsgrößen z: poisitive differnenzen der gewürfelten augenzahlen

wenn ich das in einer tabelle schreibe schaut das ja so aus:

1   2   3   4  
[mm] \bruch{1}{4} \bruch{1}{4} \bruch{1}{4} \bruch{1}{4} [/mm]

(also ich meine von 1-4 steht dann [mm] \bruch{1}{4} [/mm] )

aber ich weiß nicht wie ich das jetzt darauf anwenden soll! summer der augenzahlen..öhm... einfach dann

[mm] \bruch{1}{4}+\bruch{2}{4}+\bruch{3}{4}+\bruch{4}{4} [/mm]

?
aber wie dann bei den anderen...und was versteht man unter poisitive differenz der gewürfelten augenzahlen'?



(hab das ausversehen in das uni forum gestellt sorry das war nicht beabsichtigt...)

        
Bezug
zufallsgrößen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:38 Mi 19.03.2008
Autor: barsch

Hi,

> zufallsexperiment: zweimaliges werfen eines laplace
> tetraeders mit den augenzahlen 1,2,3,4
>  zufallsgröße X: summe der augenzahlen
>  zufallsgrößen Y: anzahl der gewürfelten zweien
>  zufallsgrößen z: poisitive differnenzen der gewürfelten
> augenzahlen

okay, gibt es dazu keine konkrete Aufgabe?

Zufallsgröße X: Summe der Augenzahlen

Du kannst dir ügerlegen, was gibt es denn für Augensummen beim zweimaligen Würfeln?!

Es gibt die Möglichkeit, Augensumme 2, 3, 4, 5, 6, 7 und 8 zu würfeln.

Wenn du dich jetzt fragst nach der Wkt. die Augensumme 3 zu würfeln kannst du das z. B. so machen. Du kannst die Augensumme drei Würfeln, indem du

1.Würfel 1 2  
2.Würfel 2 1      würfelst.

[mm] \IP(X=3)=\bruch{1}{4}*\bruch{1}{4}+\bruch{1}{4}*\bruch{1}{4}=2*\bruch{1}{16}=\bruch{1}{8}. [/mm]

Wenn du jetzt fragst: Wenn ich zweimal würfel, wie groß ist Wkt., dass ich keine 2 Würfel.

[mm] \IP(Y=0)=\bruch{3}{4}*\bruch{3}{4}=\bruch{9}{16}. [/mm]

>  zufallsgrößen z: poisitive differnenzen der gewürfelten
> augenzahlen

Das bekommst du jetzt hin?!

> und was versteht man unter poisitive differenz der gewürfelten augenzahlen'?

Achso. In diesem Zusammenhang würde ich sagen:

(Augenzahl des 1. Würfels) - (Augenzahl des 2. Würfels) [mm] \ge{0}. [/mm]

Beudetet: Wenn der 1. Würfel Augenzahl 3 zeigt und der zweite Würfel Augenzahl 2, dann ist 3-2=1 und positiv.

Umgekehrt 2-3=-1 ist keine positive Augensumme.

MfG barsch

Bezug
                
Bezug
zufallsgrößen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:47 Mi 19.03.2008
Autor: anfaenger_

das ist die konkrete aufgabenstellung
wieos bis 8?! die augenzahlen gehen doch nur bis 4 :/

Bezug
                        
Bezug
zufallsgrößen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:23 Mi 19.03.2008
Autor: barsch

Hi,

> das ist die konkrete aufgabenstellung

okay.

>  wieos bis 8?! die augenzahlen gehen doch nur bis 4 :/

Da steht: "Die Summe der Augenzahlen." Und der Aufgabenstellung kann entnommen werden, dass man zweimal würfelt.

Wenn du die Augenzahlen für beide Würfe addierst, kann die "Summe der Augenzahlen" mindestens 2 (=1+1) und höchstens 8 sein (Wenn du zweimal eine 4 würfelst.)

MfG

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de