www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integrieren und Differenzieren" - zweimalige integration
zweimalige integration < Integr.+Differenz. < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrieren und Differenzieren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

zweimalige integration: Rechenschritt in Musterlösung
Status: (Frage) beantwortet Status 
Datum: 13:29 Do 26.07.2018
Autor: fonten

Aufgabe
[mm] k_p(\phi) [/mm] = [mm] k_0(1+ a\bruch{\phi}{\pi}) [/mm]
Man erhält mit
[mm] \bruch{1}{\rho^2} \bruch{d}{d\phi}[k_p(\phi) \bruch{d}{d \phi} \Phi(\phi)] [/mm]
das Potential durch zweimalige unbestimmte Integration zu
[mm] \Phi(\phi)= \bruch{C \pi}{k_0 a} [/mm] ln (1+ [mm] \bruch{a}{\pi} \phi) [/mm] +D

Hallo,
In einer Musterlösung verstehe ich den obigen Rechenschritt nicht.
Ich hätte jetzt bei der ersten Integration nur die Ableitung "weggestrichen" und eine Konstante addiert:
[mm] \bruch{1}{\rho^2} ([k_p(\phi) \bruch{d}{d \phi} \Phi(\phi)] [/mm] +C)

Bei der zweiten Integration sieht es dann so aus, als ob man die partielle Integration anwenden könnte
[mm] \integral{f(x)g'(x) dx} [/mm] = f(x)g(x)- [mm] \integral{f'(x)g(x) dx} [/mm]
[mm] \bruch{1}{\rho^2} \integral{k_p(\phi)\Phi'(\phi) +C d\phi} [/mm] = [mm] \bruch{1}{\rho^2} \vektor{ k_p(\phi)\Phi(\phi)- \integral{k_p'(\phi)\Phi(\phi) d\phi}+ C\phi +D} [/mm]
So komme ich mit dem Integral über [mm] \Phi(\phi) [/mm] aber nicht weiter.

Wie gehen die beiden Integrationsschritte nacheinander?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Grüße
fonten

        
Bezug
zweimalige integration: Antwort
Status: (Antwort) fertig Status 
Datum: 17:42 Do 26.07.2018
Autor: Fulla


> [mm]k_p(\phi)[/mm] = [mm]k_0(1+ a\bruch{\phi}{\pi})[/mm]
> Man erhält mit
> [mm]\bruch{1}{\rho^2} \bruch{d}{d\phi}[k_p(\phi) \bruch{d}{d \phi} \Phi(\phi)][/mm]

>

> das Potential durch zweimalige unbestimmte Integration zu
> [mm]\Phi(\phi)= \bruch{C \pi}{k_0 a}[/mm] ln (1+ [mm]\bruch{a}{\pi} \phi)[/mm]
> +D
> Hallo,
> In einer Musterlösung verstehe ich den obigen
> Rechenschritt nicht.
> Ich hätte jetzt bei der ersten Integration nur die
> Ableitung "weggestrichen" und eine Konstante addiert:
> [mm]\bruch{1}{\rho^2} ([k_p(\phi) \bruch{d}{d \phi} \Phi(\phi)][/mm]
> +C)

>

> Bei der zweiten Integration sieht es dann so aus, als ob
> man die partielle Integration anwenden könnte
> [mm]\integral{f(x)g'(x) dx}[/mm] = f(x)g(x)- [mm]\integral{f'(x)g(x) dx}[/mm]

>

> [mm]\bruch{1}{\rho^2} \integral{k_p(\phi)\Phi'(\phi) +C d\phi}[/mm]
> = [mm]\bruch{1}{\rho^2} \vektor{ k_p(\phi)\Phi(\phi)- \integral{k_p'(\phi)\Phi(\phi) d\phi}+ C\phi +D}[/mm]

>

> So komme ich mit dem Integral über [mm]\Phi(\phi)[/mm] aber nicht
> weiter.

>

> Wie gehen die beiden Integrationsschritte nacheinander?


Hallo fonten,

du brauchst eine Gleichung, die du zweimal integrierst. Ich vermute mal, dass es
    [mm]\bruch{1}{\rho^2} \bruch{d}{d\phi}[k_p(\phi) \bruch{d}{d \phi} \Phi(\phi)]=0[/mm]
heißen soll... Löse das nach [mm]\Phi(\phi)[/mm] auf (und setze unterwegs die Definition von [mm]k_p(\phi)[/mm] ein)...

Lieben Gruß,
Fulla

Bezug
                
Bezug
zweimalige integration: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:56 Do 26.07.2018
Autor: fonten

Hallo Fulla,
danke für die schnelle Antwort!
Ich glaube, den Abtippfehler habe ich gemacht, weil das auch mein Denkfehler war.

Ich habe jetzt im ersten Schritt wie vorhin beschrieben integriert, dann das Ganze nach [mm] \bruch{d}{d\phi}\Phi(\phi) [/mm] umgestellt.

[mm] \bruch{d}{d\phi} \Phi(\phi) [/mm] = - c [mm] \rho^2 [/mm] * [mm] \bruch{1}{k_p(\phi)} [/mm]

Wenn ich jetzt das [mm] k_p(\phi) [/mm] einsetze und integriere:

[mm] \integral \bruch{d}{d\phi} \Phi(\phi) [/mm] = - c [mm] \rho^2 [/mm] * [mm] \integral \bruch{1}{k_0(1+a\bruch{\phi}{\pi})} [/mm]

Damit ich den Nenner beim Integrieren zum Logarithmus machen kann, erweitere ich mit [mm] \bruch{\bruch{a}{pi}}{\bruch{a}{pi}} [/mm] und bekomme das gewünschte Ergebnis

beste Grüße
fonten

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrieren und Differenzieren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de