www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Zahlentheorie" - zweite Ergänzungssatz,gauss
zweite Ergänzungssatz,gauss < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

zweite Ergänzungssatz,gauss: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:48 Mi 19.09.2012
Autor: sissile

Aufgabe
Zweite Ergänzungssatz:
Sei p [mm] \not= [/mm] 2 Primzahl. Dann ist [mm] (\frac{2}{p}) \equiv (-1)^{\frac{p-1}{8}} [/mm]

Der Beweis im Skript:
Nach GAUSSschen Lemma muss man bestimmen wieviele Elemente der Menge [mm] \{2*1,2*2,..,2*\frac{p-1}{2}\} [/mm] größer als [mm] \frac{p-1}{2} [/mm] sind, dh m [mm] \in \{1,2,..,\frac{p-1}{2}\} [/mm] derart dass 2m <= [mm] \frac{p-1}{2} [/mm] < 2(m+1), so is [mm] \gamma_p [/mm] (2) = [mm] \frac{p-1}{2} [/mm] - m
Dann wurden die Fälle p=8k+1, p =8k+7 , p=8k+3, p = 8k+5 betrachtet und mittels m das Legendresymbole [mm] (\frac{2}{p}) [/mm] angeschaut.

Nun verstehe ich aber nicht was das m sein soll.
[mm] \frac{p-1}{2} [/mm] sind alle [mm] r_i [/mm] und m sind die, die nicht im negativen landen. ABer wie kommt man auf die Ungleichung 2m <= [mm] \frac{p-1}{2} [/mm] < 2(m+1) ? Das verstehe ich gar nicht.

Hilfe würde mich freuen,
liebe Grüße

GAUSSsches Lemma:
Sei p  $ [mm] \not= [/mm] $  Pimzahl und a $ [mm] \in \IZ, [/mm] $ mit p teilt a nicht
Für ja $ [mm] \in \{a,2a,.., (p-1)/2 a\} [/mm] $ (d.h. 1 <= j <= $ [mm] \frac{p-1}{2} [/mm] $ ) sei $ [mm] r_j \in \IZ [/mm] $ durch ja $ [mm] \equiv r_j [/mm] $ (p) und $ [mm] -\frac{p-1}{2} [/mm] $ <= $ [mm] r_j [/mm] $ <= $ [mm] \frac{p-1}{2} [/mm] $ eindeutig festgelegt. Nun bezeichne $ [mm] \gamma_p [/mm] $ (a) die Anzahl der j $ [mm] \in \{1,2,.,\frac{p-1}{2} \} [/mm] $ für die $ [mm] r_j [/mm] $ <0 gilt. Dann ist
$ [mm] (\frac{a}{p}) [/mm] $ = $ [mm] (-1)^{\gamma_p(a)} [/mm] $

        
Bezug
zweite Ergänzungssatz,gauss: Antwort
Status: (Antwort) fertig Status 
Datum: 08:38 Do 20.09.2012
Autor: hippias


> Zweite Ergänzungssatz:
>  Sei p [mm]\not=[/mm] 2 Primzahl. Dann ist [mm](\frac{2}{p}) \equiv (-1)^{\frac{p-1}{8}}[/mm]
>  
> Der Beweis im Skript:
>  Nach GAUSSschen Lemma muss man bestimmen wieviele Elemente
> der Menge [mm]\{2*1,2*2,..,2*\frac{p-1}{2}\}[/mm] größer als
> [mm]\frac{p-1}{2}[/mm] sind, dh m [mm]\in \{1,2,..,\frac{p-1}{2}\}[/mm]
> derart dass 2m <= [mm]\frac{p-1}{2}[/mm] < 2(m+1), so is [mm]\gamma_p[/mm]
> (2) = [mm]\frac{p-1}{2}[/mm] - m
>  Dann wurden die Fälle p=8k+1, p =8k+7 , p=8k+3, p = 8k+5
> betrachtet und mittels m das Legendresymbole [mm](\frac{2}{p})[/mm]
> angeschaut.
>  
> Nun verstehe ich aber nicht was das m sein soll.

$m$ steht fuer die groesste Zahl [mm] $\in \{1,2,..,\frac{p-1}{2}\}$ [/mm] so, dass [mm] $2m\leq \frac{p-1}{2}$ [/mm] gilt.

>  [mm]\frac{p-1}{2}[/mm] sind alle [mm]r_i[/mm] und m sind die, die nicht im
> negativen landen. ABer wie kommt man auf die Ungleichung 2m
> <= [mm]\frac{p-1}{2}[/mm] < 2(m+1) ? Das verstehe ich gar nicht.

S.o.

>  
> Hilfe würde mich freuen,
>  liebe Grüße
>  
> GAUSSsches Lemma:
>  Sei p  [mm]\not=[/mm]  Pimzahl und a [mm]\in \IZ,[/mm] mit p teilt a nicht
>  Für ja [mm]\in \{a,2a,.., (p-1)/2 a\}[/mm] (d.h. 1 <= j <=
> [mm]\frac{p-1}{2}[/mm] ) sei [mm]r_j \in \IZ[/mm] durch ja [mm]\equiv r_j[/mm] (p) und
> [mm]-\frac{p-1}{2}[/mm] <= [mm]r_j[/mm] <= [mm]\frac{p-1}{2}[/mm] eindeutig
> festgelegt. Nun bezeichne [mm]\gamma_p[/mm] (a) die Anzahl der j [mm]\in \{1,2,.,\frac{p-1}{2} \}[/mm]
> für die [mm]r_j[/mm] <0 gilt. Dann ist
>  [mm](\frac{a}{p})[/mm] = [mm](-1)^{\gamma_p(a)}[/mm]


Bezug
                
Bezug
zweite Ergänzungssatz,gauss: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:16 Di 25.09.2012
Autor: sissile


> $ m $ steht fuer die groesste Zahl $ [mm] \in \{1,2,..,\frac{p-1}{2}\} [/mm] $ so, dass $ [mm] 2m\leq \frac{p-1}{2} [/mm] $ gilt.

Hallo,
Trotzdem verstehe ich nicht, woher diese Ungleichung kommt.
Kanst du mir das vlt. noch erklären?

Liebe Grüße

Bezug
                        
Bezug
zweite Ergänzungssatz,gauss: Antwort
Status: (Antwort) fertig Status 
Datum: 10:01 Di 25.09.2012
Autor: hippias


> > [mm]m[/mm] steht fuer die groesste Zahl [mm]\in \{1,2,..,\frac{p-1}{2}\}[/mm]
> so, dass [mm]2m\leq \frac{p-1}{2}[/mm] gilt.
>
> Hallo,
>  Trotzdem verstehe ich nicht, woher diese Ungleichung
> kommt.
>  Kanst du mir das vlt. noch erklären?
>  
> Liebe Grüße

Und ich verstehe Dich nicht :-) Du hast doch geschrieben
Der Beweis im Skript:
Nach GAUSSschen Lemma muss man bestimmen wieviele Elemente der Menge $ [mm] \{2\cdot{}1,2\cdot{}2,..,2\cdot{}\frac{p-1}{2}\} [/mm] $ größer als $ [mm] \frac{p-1}{2} [/mm] $ sind, dh m $ [mm] \in \{1,2,..,\frac{p-1}{2}\} [/mm] $ derart dass 2m <= $ [mm] \frac{p-1}{2} [/mm] $

Daher kommt die Ungleichung?


Bezug
                                
Bezug
zweite Ergänzungssatz,gauss: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:55 Di 25.09.2012
Autor: sissile

Hallo,

Ja, trotzdem ist mir der Satz nicht klar. ..

> Nach GAUSSschen Lemma muss man bestimmen wieviele Elemente der Menge $ [mm] \{2\cdot{}1,2\cdot{}2,..,2\cdot{}\frac{p-1}{2}\} [/mm] $ größer als $ [mm] \frac{p-1}{2} [/mm] $ sind, dh m $ [mm] \in \{1,2,..,\frac{p-1}{2}\} [/mm] $ derart dass 2m <= $ [mm] \frac{p-1}{2} [/mm] $

Wieso sind die Elemente der Menge $ [mm] \{2\cdot{}1,2\cdot{}2,..,2\cdot{}\frac{p-1}{2}\} [/mm] $ die größer als $ [mm] \frac{p-1}{2} [/mm] $ sind - gerade die negativen [mm] r_j [/mm] ?
Bei mir löst der Satz leider totale Verwirrung aus.. ;)

Liebe Grüße


Bezug
                                        
Bezug
zweite Ergänzungssatz,gauss: Antwort
Status: (Antwort) fertig Status 
Datum: 09:07 Mi 26.09.2012
Autor: hippias


> Hallo,
>  
> Ja, trotzdem ist mir der Satz nicht klar. ..
>  
> > Nach GAUSSschen Lemma muss man bestimmen wieviele Elemente
> der Menge [mm]\{2\cdot{}1,2\cdot{}2,..,2\cdot{}\frac{p-1}{2}\}[/mm]
> größer als [mm]\frac{p-1}{2}[/mm] sind, dh m [mm]\in \{1,2,..,\frac{p-1}{2}\}[/mm]
> derart dass 2m <= [mm]\frac{p-1}{2}[/mm]
>  
> Wieso sind die Elemente der Menge
> [mm]\{2\cdot{}1,2\cdot{}2,..,2\cdot{}\frac{p-1}{2}\}[/mm] die
> größer als [mm]\frac{p-1}{2}[/mm] sind - gerade die negativen [mm]r_j[/mm]
> ?
>  Bei mir löst der Satz leider totale Verwirrung aus.. ;)
>  
> Liebe Grüße
>  

Es geht um die Darstellung einer Zahl $n$ als $n= q'p+r'$, wobei [mm] $-\frac{p-1}{2}\leq r'\leq \frac{p-1}{2}$. [/mm] Diese basiert auf der Darstellung $n= qp+r$, [mm] $0\leq [/mm] r< p$ (Divison mit Rest). Gilt [mm] $r\leq \frac{p-1}{2}$, [/mm] so waehle $q':= q$ und $r':= r$. Gilt $r> [mm] \frac{p-1}{2}$, [/mm] so waehle $r':= r-p$ und $q':= q+1$. Offensichtlich ist dann $n= q'p+r'$ und $0>r'= r-p> [mm] \frac{p-1}{2}-p= -\frac{p+1}{2}$, [/mm] also [mm] $r'\geq -\frac{p+1}{2}+1= -\frac{p-1}{2}$. [/mm]

In diesem Sinne erhaelst die negativen [mm] $r_{i}$ [/mm] genau fuer die [mm] $i\in \{1,2,..,\frac{p-1}{2}\}$, [/mm] fuer die der Rest bei der - herkoemmlichen - Division von $2i$ mit $p$ groesser als [mm] $\frac{p-1}{2}$ [/mm] ist. Dabei ist zu beachten, dass nach Wahl von [mm] $i\leq \frac{p-1}{2}$ [/mm] schon [mm] $2i\leq [/mm] p-1$ ist, also $2i$ selber der Rest der Division mit $p$ ist.

Bezug
                                                
Bezug
zweite Ergänzungssatz,gauss: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:32 Do 27.09.2012
Autor: sissile

Großes Danke an dich!!!

Liebe Grüße

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de