www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algebra" - zyklische Gruppen
zyklische Gruppen < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

zyklische Gruppen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:10 So 27.10.2013
Autor: Maxga

Aufgabe
Sei G zyklische, endliche Gruppe mit neutralem Element e.
Zeige: Für jedes g [mm] \in [/mm] G exestiert n [mm] \in \IN [/mm] mit : [mm] g^n [/mm] = e

Hey,
ich glaube ich habe noch ein wenig Probleme
mit der Vorstellung davon, denn ich hätte jetzt einfach gesagt:
Sei a [mm] \in [/mm] G das Element, welches G erzeugt.
Sei [mm] n_e \in \IZ [/mm] mit [mm] a^{n_e} [/mm] = e und sei g [mm] \in [/mm] G bel. und  [mm] n_g \in \IZ [/mm] mit [mm] a^{n_g} [/mm] = g.
Dann ist [mm] g^{n_e} [/mm] = [mm] a^{n_g * n_e} [/mm] = [mm] a^{n_e} [/mm] * [mm] a^{n_e} [/mm] * ... * [mm] a^{n_e} [/mm] = e. (bzw. falls [mm] n_e [/mm] < 0 dann [mm] -n_e [/mm] * [mm] n_g [/mm] betrachten, macht für die Endbetrachtung keinen Unterschied, da [mm] a^{-n_e} [/mm] = [mm] a^{n_e} [/mm] )
Weiß aber nicht, wo ich benutze, dass G endlich ist? Und wo der Fehler ist(wird wohl falsch sein, wenn ich die Eigenschaft nicht benutze).
Danke euch schonmal,

LG

        
Bezug
zyklische Gruppen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:22 So 27.10.2013
Autor: hippias

Tja, wo versteckt sich die Voraussetzung, dass $G$ endlich ist! Der Beweis jedenfalls ist im Prinzip voellig richtig. Du sollst Existenz einer natuerlichen Zahl nachweisen und hast Dir richtig ueberlegt, dass man stehts [mm] $n_{e}$ [/mm] als nicht negative Zahl voraussetzen kann. Aber: ich wette jeden Betrag, dass natuerliche Zahl hier [mm] $\neq [/mm] 0$ heisst. Und weshalb kann man davon ausgehen, dass [mm] $n_{e}\neq [/mm] 0$ ist? Genau!

Bezug
                
Bezug
zyklische Gruppen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:08 So 27.10.2013
Autor: Maxga

Aha! Okay das ergibt natürlich Sinn, hatte jetzt nicht dran gedacht,
dass mit natürlichen Zahlen hier wohl die Null ausgeschlossen wird,
danke dir.
Dass so ein [mm] n_e [/mm] != 0 exestiert würde ich jetzt so oder so ähnlich argumentieren:
Sei m die Anzahl der Elemente in G, d.h. [mm] G=\{ a^0 , a^1 , ... , a^{m-1} \} [/mm]
Dann muss aber wegen [mm] a^m \in [/mm] G gelten, dass [mm] a^m [/mm] = [mm] a^k [/mm] für ein 0 <= k <= m-1 und damit
a^(m-k) = e. Also exestiert mit [mm] n_e [/mm] = m-k solch ein [mm] n_e [/mm] != 0.

lg

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de