www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - zyklische Untergruppe sa+tb
zyklische Untergruppe sa+tb < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

zyklische Untergruppe sa+tb: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 20:13 Mi 11.11.2015
Autor: dodo1924

Aufgabe
Seien [mm] a,b\in\IN. [/mm] Zeige, dass U={ [mm] sa+tb|s,t\in\IZ [/mm] } eine zyklische Untergruppe von [mm] \IZ [/mm] ist. Bestimme ein erzeugendes Element von U. Verifiziere dies für a=10 und b=6.

Hi.

Also, das mit der Untergruppe hätte ich schon mal folgend gezeigt:
[mm] \IZ [/mm] ist ja zyklisch
also
[mm] \exists U_a\le\IZ [/mm] : [mm] U_a=a*\IZ= [/mm]
[mm] \exists U_b\le\IZ [/mm] : [mm] U_b=b*\IZ= [/mm]

also wäre [mm] U=U_a+U_b, [/mm] nicht?

nun habe ich mit den Untergruppenkriterien gezeigt, dass U eine Untergruppe ist:
für [mm] a,b\inU [/mm] gilt
[mm] (a*s_1+b*t_1)+(a*s_2+b*t_2)=a*(s_1+s_2)+b*(t_1+t_2) [/mm]
also a+b [mm] \in [/mm] U

0 [mm] \in [/mm] U, da a*0+b*0=0
(as+bt)+(a(-s)+b(-t)) = 0
also existiert auch das Inverse
also ist U eine Gruppe

nun gilt ja, dass weil [mm] \IZ [/mm] zyklisch ist, auch U zyklisch sein muss
also ist U eine zyklische Untergruppe

richtig bis hierhin?
kann ich das auch anderswie beweisen?

wie kann ich nun das erzeugende Element bestimmen?
intuitiv würd ich ja sagen, dass es der ggt sein muss....bin mir aber nicht sicher ^^

Danke schonmal für die Hilfe :)

        
Bezug
zyklische Untergruppe sa+tb: Antwort
Status: (Antwort) fertig Status 
Datum: 20:51 Mi 11.11.2015
Autor: UniversellesObjekt

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Hallo,

wenn du bereits weißt, dass Untergruppen zyklischer Gruppen wieder zyklisch sind, ist die Aufgabe natürlich langweilig^^ aber alles, was du schreibst ist richtig.

Beachte, dass die Menge der natürlichen Zahlen bezüglich der Teilbarkeitsrelation eine geordnete Menge ist: $a\le b\iff a\mid b$. Das Element $\ggT(a,b)$ ist dasselbe wie ein Infimum von $\{a,b\}$ bezüglich dieser Ordnung. Die Infimum-Eigenschaft sagt ja in diesem Fall: Der größte gemeinsame Teiler teilt sowohl $a$ und $b$ und jeder andere gemeinsame Teiler teilt bereits den größten gemeinsamen Teiler.

Die Menge der Untergruppen von $\IZ$ mit $a\in\IN$ ist durch umgekehrte Inklusion geordnet: $G\le H\iff G\supseteq H$. Zeige, dass die Summe $G+H$ ein Infimum von $\{G,H\}$ ist. Die Inifmum-Eigenschaft besagt in diesem Fall: Die Summe enthält $G$ und $H$ und jede andere Untergruppe, welche $G$ und $H$ enthält, enthält bereits die Summe.

Außerdem ist die Abbildung $\IN\longrightarrow\{\text{Untergruppen von }\IZ}\}$, $a\longmapsto a\IZ$ ein Ordnungsisomorphismus. Hieraus folgt alles.

Liebe Grüße,
UniversellesObjekt

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de