www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - zyklischer Modul
zyklischer Modul < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

zyklischer Modul: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:11 Sa 24.01.2009
Autor: one

Aufgabe
Für welche n [mm] \ge [/mm] 1 ist M = [mm] \IZ/4 \oplus \IZ/5 \oplus \IZ/n [/mm] ein zyklischer [mm] \IZ-Modul? [/mm]

Ich glaube es muss gelten, dass ggT(4,5,n) = 1 ist.
Ist dies der Fall, dann ist M zyklisch.
Doch wie kann ich dies zeigen?

        
Bezug
zyklischer Modul: Antwort
Status: (Antwort) fertig Status 
Datum: 19:20 Sa 24.01.2009
Autor: SEcki


>  Ich glaube es muss gelten, dass ggT(4,5,n) = 1 ist.

EDIT: ja, es muss [m]ggt(4*5,n)=1[/m] heißen!

>  Ist dies der Fall, dann ist M zyklisch.
> Doch wie kann ich dies zeigen?

Was heißt den zyklisch in diesem Fall? Falls die Bedingung eintritt, welchen Erzeuger kann man wohl nehmen? Kannst du beweisen, dass es einer ist? Nun nehme das Gegenteil an und nehme auch an, es gäbe so einen Erezuger e, dann gibt es doch m mit [m]m*e=(1,0,0)[/m], n mit [m]n*e=(0,1,0)[/m] und o mit [m]o*e=(0,0,1)[/m]. Kann man das zum Widerspruch führen, abhängig davon, wie der ggt nun genau aussieht?

SEcki

Bezug
                
Bezug
zyklischer Modul: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:44 Sa 24.01.2009
Autor: felixf

Hallo

> >  Ich glaube es muss gelten, dass ggT(4,5,n) = 1 ist.

>  
> Scheint mir auch richtig.

Das stimmt sicher nicht, da dies fuer jede natuerliche Zahl $n$ gilt, da $4$ und $5$ bereits teilerfremd sind.

Es muss gelten: 4, 5 und n sind paarweise teilerfremd, also (da 4, 5 bereits teilerfremd sind) $ggT(4 [mm] \cdot [/mm] 5, n) = 1$ oder $ggT(2 [mm] \cdot [/mm] 5, n) = 1$.

> >  Ist dies der Fall, dann ist M zyklisch.

> > Doch wie kann ich dies zeigen?
>
> Was heißt den zyklisch in diesem Fall? Falls die Bedingung
> eintritt, welchen Erzeuger kann man wohl nehmen? Kannst du
> beweisen, dass es einer ist? Nun nehme das Gegenteil an und
> nehme auch an, es gäbe so einen Erezuger e, dann gibt es
> doch m mit [m]m*e=(1,0,0)[/m], n mit [m]n*e=(0,1,0)[/m] und o mit
> [m]o*e=(0,0,1)[/m]. Kann man das zum Widerspruch führen, abhängig
> davon, wie der ggt nun genau aussieht?

Falls man ihn hat, ist auch der Hauptsatz ueber endlich (erzeugte) abelsche Gruppen sehr hilfreich.

LG Felix


Bezug
                        
Bezug
zyklischer Modul: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:51 So 25.01.2009
Autor: SEcki


> Es muss gelten: 4, 5 und n sind paarweise teilerfremd, also
> (da 4, 5 bereits teilerfremd sind) [mm]ggT(4 \cdot 5, n) = 1[/mm]
> oder [mm]ggT(2 \cdot 5, n) = 1[/mm].

Öhm, ja. Hatte ich auch so im Kopf, als ich die Antwort schrieb. Danke!

SEcki

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de