www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen
   Einstieg
   
   Index aller Artikel
   
   Hilfe / Dokumentation
   Richtlinien
   Textgestaltung
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Benutzer:tobit09/Stochastik2
Mach mit! und verbessere/erweitere diesen Artikel!
Artikel • Seite bearbeiten • Versionen/Autoren

Benutzer:tobit09/Stochastik2

Stochastisches Modellieren für Einsteiger

$ \leftarrow $ 1. Ergebnismengen $ \blue\Omega $ $ \uparrow $ Inhaltsverzeichnis $ \rightarrow $ 3. Zähldichten p und Wahrscheinlichkeits-Verteilungen P

2. Ereignisse $ E $


Unter einem Ereignis aus der realen Welt wollen wir etwas verstehen, das bei einem stochastischen Vorganges je nach Ausgang eintritt oder nicht eintritt. Beispiele wären "gerade Zahl gewürfelt" beim Würfelwurf oder "Farbe Pik gezogen" beim Ziehen einer Karte vom Stapel eines Skat-Spiels.

Um vom zugehörigen mathematischen Ereignis $ E $ sprechen zu können, muss man sich zunächst auf eine Ergebnismenge $ \Omega $ für den stochastischen Vorgang festlegen. Dann verstehen wir unter dem mathematischen Ereignis $ E $ die Menge aller $ \omega\in\Omega $, die für Ausgänge stehen, bei denen das Ereignis aus der realen Welt eintritt.


Beispiel: "gerade Zahl gewürfelt" beim Würfelwurf

$ \Omega:=\{1,2,3,4,5,6\} $
$ E:=\{\omega\in\Omega\;|\;\omega\text{ gerade}\}=\{2,4,6\} $


Weiteres Beispiel: "Farbe Pik gezogen" beim Ziehen einer Karte vom Stapel eines Skat-Spiels

$ \Omega:=\{\text{Pik }7, \text{Pik }8, .... , \text{Pik As},\text{Kreuz }7, \text{Kreuz }8, ... , \text{Kreuz As},\text{Herz }7, \text{Herz }8, ... , \text{Herz As},\text{Karo }7, \text{Karo }8, ... , \text{Karo As}\} $
$ E:=\{\text{Pik }7, \text{Pik }8, .... , \text{Pik As}\} $

Oder:
$ \Omega:=\{1,2,3,4,5,6,7,\ldots,32\} $
Annahme: Die 7 Pik-Karten haben die Nummern von 1 bis 7 erhalten.
$ E:=\{1,2,3,4,5,6,7\} $


Aufgabe 5: Geben Sie die zugehörigen mathematischen Ereignisse $ E $ an:
(i) "keine Niete erdreht" beim Glücksrad mit den Feldern Niete, Trostpreis und Hauptpreis
(ii) "schwarze Kugel gezogen" beim Ziehen einer Kugel aus einer Urne mit 3 schwarzen und einer weißen Kugel bei Wahl von $ \Omega:=\{1,2,3,4\} $, wobei die schwarzen Kugeln die Nummern 1, 2 und 3 und die weiße Kugel die Nummer 4 erhalte
(iii) "schwarze Kugel gezogen" beim Ziehen einer Kugel aus einer Urne mit 3 schwarzen und einer weißen Kugel bei Wahl von $ \Omega:=\{s,w\} $

Lösungsvorschlag


Schauen wir uns noch ein paar Ereignisse bei stochastischen Vorgängen an, deren Ausgänge durch Tupel beschrieben werden:


Beispiel: "Augensumme gerade" beim zweifachen Würfelwurf

$ \Omega:=\{1,2,3,4,5,6\}^2=\{(\omega_1,\omega_2)\;|\;\omega_1,\omega_2\in\{1,2,3,4,5,6\}\} $
$ E:=\{(\omega_1,\omega_2)\in\Omega\;|\;\omega_1+\omega_2\text{ gerade}\}=\{(1,1),(1,3),(1,5),(2,2),(2,4),(2,6),(3,1),(3,3),(3,5),(4,2),(4,4),(4,6),(5,1),(5,3),(5,5),(6,2),(6,4),(6,6)\} $


Aufgabe 6: Geben Sie die zugehörigen mathematischen Ereignisse $ E $ an:
(i) "erste Zahl gerade" beim zweifachen Würfelwurf
(ii) "im ersten und letzten Wurf landet die Münze auf der gleichen Seite" beim 10-fachen Münzwurf
(iii) "zwei schwarze Kugeln gezogen" beim zweifachen Ziehen ohne Zurücklegen aus einer Urne mit 3 schwarzen und einer weißen Kugel
(iv) "erst Pik, dann zweimal Herz gezogen" beim Ziehen von 3 verschiedenen Karten eines Skat-Spiels

Lösungsvorschlag

Erstellt: Mi 28.11.2012 von tobit09
Letzte Änderung: Do 29.11.2012 um 08:12 von tobit09
Artikel • Seite bearbeiten • Versionen/Autoren • Titel ändern • Artikel löschen • Quelltext

^ Seitenanfang ^
www.vorhilfe.de