www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen
   Einstieg
   
   Index aller Artikel
   
   Hilfe / Dokumentation
   Richtlinien
   Textgestaltung
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
EinführungAnalysis
Mach mit! und verbessere/erweitere diesen Artikel!
Artikel • Seite bearbeiten • Versionen/Autoren

EinführungAnalysis

Hier entsteht eine Sammlung von Aufgaben, die zur Einführung in die Analysis geeignet sind.


Gegeben sei der Graph einer Funktion f mit $ f'(a) \ne 0 $.

a) Gib die Gleichung der Normalen des Graphen der Funktion f an der Stelle a an.
b) Bestimme die Schnittpunkte dieser Normalen mit den Koordinatenachsen.
c) Wie würde die Normale verlaufen, wenn f'(a) = 0 wäre?




Kann eine ganzrationale Funktion 4. Grades genau eine Berührstelle und genau eine Durchgangsstelle haben?




Für zwei Funktionen $ f_1 $ und $ f_2 $ gelte:
$ f_1(2) = 5 $ und $ f_1 $ habe dort die Steigung 30° zur x-Achse.
$ f_2(2) = 7 $ und $ f_2 $ habe dort die Steigung 45° zur x-Achse.
Wie lautet die Steigung der Funktion $ f(x) = f_1(x) + f_2(x) $ im Punkt x =2?




Bestimme die Gleichung einer Parabel p(x)=ax²+bx+c, die genau eine Nullstelle hat und die die Gerade g(x)=2x+4 bei $ x_1 $=2 und $ x_2=6 $ schneidet.



Gegeben ist die Funktion f mit $ f(x)=3x^2-6x $
Welche Stammfunktion zu f hat einen Graphen dessen Tiefpunkt auf der x-Achse liegt?




Die Exponentialfunktion $ f(x) = a\cdot{}b^x $ geht durch die Punkte P und Q. Bestimme a und b.
a)  P (1|6)  Q (2|18)
b)  P (-1|0,3)  Q (2|37,5)
c)  P (4|12,5)  Q (-1|0,8)
d)  P (1/2 | 3)  Q (2|18)




Eine Substanz zerfällt so, dass nach jeweils einem Tag 10% [5%] weniger vorhanden ist.
Am Anfang sind 30g vorhanden. Bestimme die Zuordnungsvorschrift.
Wieviel g sind nach 2 Wochen, nach 1 Monat noch vorhanden?




Gegeben: $ f(x)= xe^{-x}+e^{-x} $
h(x) ist die Umkehrfunktion von f(x)

Begründen Sie, ohne Bestimmung von h(x), an welcher Stelle die Ableitung von h(x) ein lokales Extremum aufweist. Bestimmen Sie den Wert der Ableitung von h(x) an dieser Stelle.






Diese Aufgaben können als Übungsaufgaben verstanden werden;
wenn du die Aufgabe gelöst hast oder noch Fragen dazu stellen möchtest,
poste die Aufgabe und deine Lösungsideen im [link]Matheraum.

Erstellt: Do 13.01.2005 von informix
Letzte Änderung: Do 17.03.2005 um 08:28 von informix
Artikel • Seite bearbeiten • Versionen/Autoren • Titel ändern • Artikel löschen • Quelltext

^ Seitenanfang ^
www.vorhilfe.de