www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen
   Einstieg
   
   Index aller Artikel
   
   Hilfe / Dokumentation
   Richtlinien
   Textgestaltung
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Ereignis
Mach mit! und verbessere/erweitere diesen Artikel!
Artikel • Seite bearbeiten • Versionen/Autoren

Ereignis

Definition Ereignis


Schule

Jede Teilmenge des endlichen Ergebnisraumes $ \Omega $ heißt Ereignis A, d.h. $ A \subseteq \Omega $.

Ein Ereignis $ \{\omega\} $, d.h. eine Teilmenge mit nur einem Ergebnis, heißt Elementarereignis.

Die Menge aller Ereignisse heißt Ereignisraum $ P(\Omega) $.
(Das $ P $ bei $ P(\Omega) $ ist dabei eine Abkürzung für die Potenzmenge von $ \Omega $.
Hier ist also ausnahmsweise mal nicht die Wahrscheinlichkeit gemeint!)

Die Wahrscheinlichkeiten von Ereignissen lassen sich besonders gut berechnen, wenn den Ergebnissen des Zufallsexperiments Zahlen zugeordnet werden: Zufallsgröße


Gegenereignis

Sei E ein Ereignis eines Ergebnisraumes $ \Omega $, dann nennt man $ \overline{E} $ das Gegenereignis zu E bzgl. $ \Omega $.


Ergebnisraum und Ereignisse - ein kleines Beispiel

Wir wollen einmal einen Würfel werfen.

Der Ergebnisraum ist $ \Omega=\{1,2,3,4,5,6\} $.
Ein Element $ \omega\in\Omega $ nennt man Ergebnis.

Ein Ereignis $ A $ kann man einmal mit Worten formulieren, z.B. "man würfelt eine gerade Zahl",
oder mit der Mengenschreibweise $ A=\{2,4,6\} $.
Ein anderes Beispiel wäre das Ereignis $ B $ "man würfelt eine Zahl größer als Vier" - das wäre $ B=\{5,6\} $.
Oder das Ereignis $ C $ "man würfelt eine Sechs" - das wäre $ C=\{6\} $.

Man kann neue Ereignisse aus den angegebenen Ereignissen bilden:

Oder-Ereignis
"man würfelt eine ungerade Zahl oder man würfelt eine Zahl größer als Vier"
dann bildet man die Vereinigung der beiden Ereignisse: $ A\cup B=\{1,3,5\}\cup\{5,6\}=\{1,3,5,6\} $

Und-Ereignis
"man würfelt eine ungerade Zahl und man würfelt eine Zahl größer als Vier"
insgesamt also: "man würfelt eine ungerade Zahl größer als Vier"
dann bildet man den Durchschnitt der beiden Ereignisse: $ A\cap B=\{1,3,5\}\cap\{5,6\}=\{5\} $

Gegenereignis
"man würfelt nicht eine ungerade Zahl; dann würfelt man eben eine gerade Zahl .."
E={1,3,5} $ \Rightarrow \overline{E}=\Omega \backslash E = \{1,2,3,4,5,6\} \ \backslash \ \{1,3,5\}=\{2,4,6\} $

Merke: Ereignisse sind immer Teilmengen des Ergebnisraums!


Man kann für jedes Ereignis die Wahrscheinlichkeit bestimmen -
in den genannten Beispielen wäre $ P(A)=\frac{1}{2} $, $ P(B)=\frac{1}{3} $ und $ P(C)=\frac{1}{6} $.


Die Summenregel

Für beliebige Ereignisse $ A,B $ gilt $ P(A\cup B)=P(A)+P(B)-P(A\cap B) $.

Überprüfen wir die Regel anhand unseres Beispiels: Was ist das Ereignis $ A\cup B $?
In Mengenschreibweise ist $ A\cup B=\{2,4,5,6\} $ (Vereinigung!) -
in Worten hieße das "man würfelt eine gerade Zahl oder eine Zahl größer als Vier".

Was ist nun die Wahrscheinlichkeit $ P(A\cup B) $ ?

Wir können sofort sagen, dass $ P(A\cup B)=\frac{2}{3} $ oder aber die Formel benutzen:
$ P(A\cup B)=P(A)+P(B)-P(A\cap B) $.

Dazu müssen wir noch wissen, was das Ereignis $ A\cap B $ ist,
und wie groß die Wahrscheinlichkeit $ P(A\cap B) $ ist...
Es ist $ A\cap B=\{6\} $ (Schnittmenge!) und damit $ P(A\cap B)=\frac{1}{6} $.

Benutzen wir jetzt die Summenregel:
$ P(A\cup B)=P(A)+P(B)-P(A\cap B)=\frac{1}{2}+\frac{1}{3}-\frac{1}{6}=\frac{2}{3} $.

Wir haben damit unsere erste Berechnung bestätigt und dabei (hoffentlich!) gelernt, was es mit der Summenregel auf sich hat.



Universität


Erstellt: Mi 02.03.2005 von informix
Letzte Änderung: Fr 13.06.2008 um 17:07 von informix
Weitere Autoren: Yuma
Artikel • Seite bearbeiten • Versionen/Autoren • Titel ändern • Artikel löschen • Quelltext

^ Seitenanfang ^
www.vorhilfe.de