www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen
   Einstieg
   
   Index aller Artikel
   
   Hilfe / Dokumentation
   Richtlinien
   Textgestaltung
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Flächeninhalt
Mach mit! und verbessere/erweitere diesen Artikel!
Artikel • Seite bearbeiten • Versionen/Autoren

Flächeninhalt

Flächeninhalt und Integral


Schule

Zwischen dem Flächeninhalt unter einem (stetigen) Funktionsgraphen und dem bestimmten Integral über diese Funktion besteht ein enger Zusammenhang.

Das bestimmte Integral ist zunächst nur für Funktionen f(x)>0 definiert, seine Definition kann jedoch auch für f(x)<0 erweitert werden.

Aus der anschaulichen Herleitung des bestimmten Integrals mit Rechtecken leitet man her, dass der Wert eines bestimmten Integrals, bei dem über dem gesamten Intergrationsintervall f(x)<0 ist, negativ sein muss, weil die "Höhe" der Rechtecke ja durch einen negativen Wert bestimmt ist.

Es gilt also:

$ \text{wenn }f(x)>0\text{ über } [a;b]  \text{, dann gilt: }\integral_{a}^{b}{f(x)\ dx}>0 $

$ \text{wenn }f(x)<0\text{ über } [a;b]  \text{, dann gilt: }\integral_{a}^{b}{f(x)\ dx}<0 $

Wenn nun die Funktion f im Intervall [a;b] eine Nullstelle $ x_n $ hat, muss man aufpassen:

Beispiel

$ f(x)=(x-1)^3 \text{ über } [0;2] $

Nullstelle bei x=1
$ \integral_{0}^{1}{(x-1)^3 \ dx}=-\bruch{1}{4} \text{ und } \integral_{1}^{2}{(x-1)^3 \ dx}=\bruch{1}{4} $

Das erste Integral liefert einen Wert <0, man spricht von einem orientierten Flächeninhalt, weil die berechnete Fläche unter der x-Achse liegt, hat sie einen negativen Wert.

Will man nun die Fläche zwischen Graph und x-Achse berechnen, darf man nicht $ \integral_{0}^{2}{(x-1)^3 \ dx} $ berechnen; es ergäbe sich:

$ \integral_{0}^{2}{(x-1)^3 \ dx}=0 $

weil sich die beiden orientierten Flächenstücke gegenseitig aufheben.

Berechnet man hingegen die beiden Flächen getrennt und betrachtet nur ihren Absolutbetrag, dann erhält man tatsächlich die gewünschte Fläche:

$ |\integral_{0}^{1}{(x-1)^3 \ dx}|+|\integral_{1}^{2}{(x-1)^3 \ dx}|=\bruch{1}{4}+\bruch{1}{4}=\bruch{1}{2} $

Sind die beiden Flächenstücke unterschiedlich groß, liefert das Integral manchmal sogar einen negativen Wert:

$ \integral_{-1}^{1}{(x-1)^3 \ dx}+\integral_{1}^{2}{(x-1)^3 \ dx}=-4+\bruch{1}{4}=-\bruch{15}{4} $

die korrekt berechnete Fläche lautet:
$ |\integral_{-1}^{1}{(x-1)^3 \ dx}|+|\integral_{1}^{2}{(x-1)^3 \ dx}|=4+\bruch{1}{4}=\bruch{17}{4} $

Merkregel:

  • Soll das Integral berechnet werden, braucht man sich um Nullstellen im Integrationsintervall nicht zu kümmern.
    $ \integral_{a}^{b}{f(x) \ dx}=... $
  • Ist dagegen die Fläche gesucht, muss man zunächst die Nullstellen der Funktion im Intervall bestimmen und sich dann von linker Grenze von Nullstelle zu Nullstelle zu hangeln, bis die rechte Grenze erreicht ist.
    $ |\integral_{a}^{x_1}{f(x) \ dx}|+|\integral_{x_1}^{b}{f(x) \ dx}|= A_1+A_2=...>0 $


Universität

TODO

Erstellt: So 19.10.2008 von informix
Letzte Änderung: So 19.10.2008 um 20:55 von informix
Artikel • Seite bearbeiten • Versionen/Autoren • Titel ändern • Artikel löschen • Quelltext

^ Seitenanfang ^
www.vorhilfe.de