www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen
   Einstieg
   
   Index aller Artikel
   
   Hilfe / Dokumentation
   Richtlinien
   Textgestaltung
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Normalenform
Mach mit! und verbessere/erweitere diesen Artikel!
Artikel • Seite bearbeiten • Versionen/Autoren

Normalenform

(Weitergeleitet von HNF)

Definition Normalenform der Ebenengleichung


Schule

Gegeben sei die Ebene E durch $ E: \vec x = \vec a + \lambda\cdot{} \vec u + \mu\cdot{} \vec v $.

Sei $ \vec a $ der Ortsvektor zu einem Punkt A der Ebene E,
und sei $ \vec n $ ein Vektor, der auf den Richtungsvektoren $ \vec u $ und $ \vec v $ der Ebene (und damit auf der ganzen Ebene) senkrecht steht, dieser Vektor wird Normalenvektor genannt.

Diesen Normalenvektor kann man mit dem Kreuzprodukt der beiden Spannvektoren relativ schnell ermitteln, es gilt also: $ \vec{n}=\vec{u}\times\vec{v} $

Dann gilt:

$ \vec n \cdot{} \vec x = \vec n \cdot{} \vec a + \lambda\cdot{} \underbrace {\vec n \cdot{} \vec u}_{=0} + \mu\cdot{} \underbrace {\vec n \cdot{} \vec v}_{=0} \Rightarrow E: \vec n \cdot{} \vec x = \vec n \cdot{} \vec a \gdw \vec n\cdot{}\left(\vec x - \vec a\right)=0 $


oder ausführlich in Koordinatenschreibweise:

$ E: \begin{pmatrix} n_1 \\ n_2 \\ n_3 \end{pmatrix} \cdot{} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}= \begin{pmatrix} n_1 \\ n_2 \\ n_3 \end{pmatrix} \cdot{} \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} $


oder prägnanter:

$ E: \begin{pmatrix} n_1 \\ n_2 \\ n_3 \end{pmatrix} \cdot{} \left( \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}-\begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}\right)=0 $


Multipliziert man die Skalarprodukte aus, erhält man die Ebenengleichung in Koordinatenform:

$ E: n_1 x_1 + n_2 x_2 + n_3 x_3 - (n_1 a_1 + n_2 a_2 + n_3 a_3) =0 $


$ E: n_1 x_1 + n_2 x_2 + n_3 x_3 + d = 0 $


mit

$ d:=(n_1 a_1 + n_2 a_2 + n_3 a_3) $


Hesse-Form der Ebenengleichung

Benutzt man zum Aufstellen der Normalenform der Ebenengleichung einen Normaleneinheitsvektor

$ {\vec n}^0=\bruch{\vec n}{|\vec n|} $

so, dass in der Gleichung

$ {\vec n}^0 \cdot \vec x = {\vec n}^0 \cdot \vec a  \gdw {\vec n}^0 \cdot \vec x - {\vec n}^0 \cdot \vec a=0 $


der Ausdruck $ {\vec n}^0 \cdot \vec a > 0 $ gilt, so heißt diese Normalenform Hesse-Form der Ebenengleichung.


Abstandsbetrachtung mit der Hesse-Form:

Setzt man den Ortsvektor $ \vec p $ eines Punktes P für $ \vec x $ in die Hesse-Form ein, so erhält man die Maßzahl d des Abstands |d| des Punktes P von der Ebene:

$ d=\vec n^0 \cdot{} \vec p - \vec n^0 \cdot{} \vec a=\vec n*(\vec p-\vec a) $

d>0: P und der Ursprung O liegen auf verschiedenen Seiten der Ebene E.
d=0: P liegt auf der Ebene E.
d<0: P und O liegen auf derselben Seite der Ebene E.


Achsenabschnittsform der Ebenengleichung

Sie wird entwickelt aus der Normalenform $ E: n_1 x_1 + n_2 x_2 + n_3 x_3 + n_4 = 0 $, indem man $ n_4 $ auf die andere Seite der Gleichung holt und anschließend durch $ -n_4 $ teilt:

$ \frac{-n_1}{n_4}\cdot{}x_1+\frac{-n_2}{n_4}\cdot{}x_2+\frac{-n_3}{n_4}\cdot{}x_3=1 $

Die Kehrbrüche der Koeffizienten ergeben dann die Spurpunkte der Ebene mit den Koordinatenachsen:

$ S_1\left(\frac{-n_4}{n_1}|0|0\right) $ ;  $ S_2\left(0|\frac{-n_4}{n_2}|0\right) $  ; $ S_3\left(0|0|\frac{-n_4}{n_3}\right) $



Universität


Erstellt: Mo 20.12.2004 von informix
Letzte Änderung: Sa 12.03.2011 um 14:45 von M.Rex
Weitere Autoren: Loddar
Artikel • Seite bearbeiten • Versionen/Autoren • Titel ändern • Artikel löschen • Quelltext

^ Seitenanfang ^
www.vorhilfe.de