www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen
   Einstieg
   
   Index aller Artikel
   
   Hilfe / Dokumentation
   Richtlinien
   Textgestaltung
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
monoton
Mach mit! und verbessere/erweitere diesen Artikel!
Artikel • Seite bearbeiten • Versionen/Autoren

monoton

Monotonie einer Funktion

Eine Funktion $ f $ heißt "streng monoton steigend" auf dem Intervall $ I $,
wenn für alle $ x_1 < x_2 $ aus dem Intervall $ I $ gilt: $ f(x_1)<f(x_2) $,
also: wenn für steigende $ x $ (aus $ I $) auch die Funktionswerte steigen.
--
Eine Funktion $ f $ heißt "monoton steigend" auf dem Intervall $ I $,
wenn für alle $ x_1 < x_2 $ aus dem Intervall $ I $ gilt: $ f(x_1) \leq f(x_2) $,
also: wenn für steigende $ x $ (aus $ I $) die Funktionswerte nicht fallen.
--
Analoge Definition für (streng) monoton fallende Funktion:
Eine Funktion $ f $ heißt "streng monoton fallend" auf dem Intervall $ I $,
wenn für alle $ x_1 < x_2 $ aus dem Intervall $ I $ gilt: $ f(x_1)>f(x_2) $,
also: wenn für steigende $ x $ (aus $ I $) die Funktionswerte fallen.
--
Eine Funktion $ f $ heißt "monoton fallend" auf dem Intervall $ I $,
wenn für alle $ x_1 < x_2 $ aus dem Intervall $ I $ gilt: $ f(x_1) \geq f(x_2) $,
also: wenn für steigende $ x $ (aus $ I $) die Funktionswerte nicht steigen.
--
Voraussetzungen
Das Intervall $ I \not=\emptyset $ muß im Definitionsbereich der Funktion enthalten sein.


Bemerkungen.

1.) Wenn die Funktion differenzierbar ist, ermittelt man oft zunächst die Extremstellen der Funktion, um Aussagen über das Monotonieverhalten der Funktion treffen zu können.
Es gilt nämlich (anschaulich):
Die Funktion "steigt" vom (lokalen) Tiefpunkt bis zum (lokalen) Hochpunkt, anschließend fällt sie wieder bis zum nächsten (lokalen) Tiefpunkt etc.

2.) Jede "streng monoton steigende" Funktion ist auch "monoton steigend".

3.) Jede "streng monoton fallende" Funktion ist auch "monoton fallend".

4.) Jede reellwertige monotone Funktion hat höchstens abzählbar viele Unstetigkeitsstellen, und diese sind alle Sprungstellen!

5.) Ist $ I=[a,b] \subset \IR $ ein Intervall und ist $ f $ auf $ I^o $ differenzierbar und stetig auf $ I $, so gilt:
i) Genau dann, wenn $ f'(x) \ge 0 $ $ \forall x \in I^o $ gilt, ist $ f $ monoton wachsend auf $ I $.
ii) Gilt $ f'(x) > 0 $ $ \forall x \in I^o $, so ist $ f $ streng monoton wachsend auf $ I $.
iii) Genau dann, wenn $ f'(x) \le 0 $ $ \forall x \in I^o $ gilt, ist $ f $ monoton fallend auf $ I $.  
iv) Gilt $ f'(x) < 0 $ $ \forall x \in I^o $, so ist $ f $ streng monoton fallend auf $ I $.

(Hierbei ist $ I^o $ das Innere von $ I $, also $ I^o=(a,b) $. Beweisen kann man die Aussagen 5.) i) bis iv) mit dem Mittelwertsatz.)

Man beachte:
Z.B. 5.) ii) läßt sich nicht umkehren, d.h., unter den gegebenen Voraussetzungen an $ f $ gilt:
$ f $ streng monoton auf $ I $ $ \stackrel{i.A.}{\not\!\!\Longrightarrow} $ $ f'(x) > 0 $ $ \forall x \in I^o $.
Dazu betrachte man etwa $ f:\IR \to \IR $ definiert durch $ f(x):=x³ $. $ f $ ist streng monoton auf ganz $ \IR $ und differenzierbar auf ganz $ \IR $, also insbesondere stetig auf $ [-1,1] \subset \IR $ und differenzierbar auf $ (-1,1) \subset \IR $. Es gilt jedoch $ f'(0)=0 $ (und es ist $ 0 \in (-1,1) $).



Beispiele:

1.) Die Funktion $ f: \IR \rightarrow \IR $ definiert durch $ f(x):=x^2 $ ist "(streng) monoton steigend" auf dem Intervall $ [0;\infty[ $ und "(streng) monoton fallend" auf dem Intervall $ ]-\infty;0] $.   

2.) Die Funktion $ f: \IR \rightarrow \IR $ definiert durch $ f(x):=4 $ ist sowohl "monoton fallend" als auch "monoton steigend" auf jedem nichtleeren Intervall $ I \subset \IR $.
Diese Funktion ist jedoch auf keinem Intervall $ I \subset \IR $, das mehr als eine reelle Zahl enthält, "streng monoton (steigend oder fallend)".

3.) Die Funktion $ f: \IR \rightarrow \IR $ definiert durch $ f(x):=\left\{\begin{matrix}
3x,  & \mbox{falls }x < 0 \\
2,  & \mbox{falls } 0 \le x \le 3 \\
-x^2, &  \mbox{falls } x > 3
\end{matrix}\right\} $
ist "streng monoton steigend" auf dem Intervall $ I_1:=]-\infty;0[ $, sowohl "monoton steigend" als auch "monoton fallend" auf dem Intervall $ I_2:=[0;3] $ und "streng monoton fallend" auf dem Intervall $ I_3:=]3;\infty[ $.
Ferner gilt hier:
$ f $ ist "monoton steigend" auf dem Intervall $ I_4:=I_1 \cup I_2=]-\infty;3] $ (aber dort ist $ f $ nicht streng monoton steigend!) und
$ f $ ist "monoton fallend" auf dem Intervall $ I_5:=I_2 \cup I_3=[0;\infty[ $ (aber dort ist $ f $ nicht streng monoton fallend!).

Erstellt: Di 28.09.2004 von informix
Letzte Änderung: Do 05.10.2006 um 16:30 von informix
Weitere Autoren: Marcel
Artikel • Seite bearbeiten • Versionen/Autoren • Titel ändern • Artikel löschen • Quelltext

^ Seitenanfang ^
www.vorhilfe.de