www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Ganzrationale Funktionen" - Bestimmung ganzrationaler Funk
Bestimmung ganzrationaler Funk < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bestimmung ganzrationaler Funk: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 21:47 Di 05.06.2007
Autor: jana1

Aufgabe
Hallo ,kann mir bitte jemand dabei helfen:
1.Stellt mit Hilfe der Eigenschaften für die Funktion die Gleichung auf (Gleichnissystem)
2.Löst das Gleichungssystem
3.Stellt die gesuchte Funktion
Eine Funktion 3.Grades geht durch den Ursprung und hat ihren Wendepunkt in P(1/-2).Die Wendetangente schneidet die x-Achse in Q(2/0)

Funktion 3.Grades muss lauten:f(x)=ax³+bx²+cx+d
dann ist:
f`(x)=3ax²+2bx+c
f``(x)=6ax+2b
f```(x)=6a
und die Funktion für die Wendetangente hab ich ausgerechnet ist
y=2x-4
und weiter was muss ich jetzt machen ich muss doch bestimmte dire Punkte P und/oder Q in einer der Ableitungen einsetzen aber in welche und wie?
Ich hab mir schon eine Skizze gemacht mit der Funktion den Ableitungen und der Geraden aber ich komme nicht weiter.Und die Steigung der Wendetangente und der f```(x) muss 2 sein also sind die parallel.
Brauche eure Hilfe

        
Bezug
Bestimmung ganzrationaler Funk: Antwort
Status: (Antwort) fertig Status 
Datum: 22:06 Di 05.06.2007
Autor: Slartibartfast

Hallo jana1,

genau, du musst P in die Ausgangsgleichung einsetzen, nicht aber Q, denn der Punkt liegt gar nicht auf der Funktion. Nimm statt dessen O. Nun hast du schon mal die ersten 2 Gleichungen des Systems.
Von der Wendetangente kannst du die Steigung (1. Ableitung) an der Stelle des Wendepunktes verwenden.
Die Wendestelle kann man auch noch einbauen. Bedingung für den Wendepunkt ist die 2. Ableitung.
Die 3. Ableitung ist irrelevant.

Nun hast du für 4 Unbekannte 4 Gleichungen die du mit Hilfe von Gauß lösen kannst.

Gruß
Slartibartfast

Bezug
                
Bezug
Bestimmung ganzrationaler Funk: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 17:49 Do 07.06.2007
Autor: jana1

also p in die Ausgangsgleichung P(1/-2)
also so:
f(x)=ax³+bx²+cx+d
f(1)=a1³+b1²+c1+d
oder wie und ich hab kein gauß

Bezug
                        
Bezug
Bestimmung ganzrationaler Funk: Antwort
Status: (Antwort) fertig Status 
Datum: 18:27 Do 07.06.2007
Autor: M.Rex

Hallo.

Vermeide bitte in Zukunft Doppelpostings

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de