www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - DGL
DGL < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

DGL: Umwandeln in System Einf. DGL
Status: (Frage) beantwortet Status 
Datum: 08:57 Sa 22.10.2005
Autor: Toyo

Hi Leute, ich bin leider auf dem Gebiet der DGL nicht so bewandert, daher habe ich hier noch mal eine Frage an euch.
Was mache ich denn wenn ich z.B. eine solche DGL vereinfachen will?

u''-100u=0

mit den Randbedingungen: u(0)=1 und u(1)=0
ich will die Gleichung spaeter numerisch loesen und brauche daher ein System von einfachen DGL.
Kann ich einfach schreiben:
y0=u
y1=u'
und dann ist y0'=y1 und y1'=100y0
geht das so?

Mein problem ist jetzt noch dass ich das numerisch mit der shoot-method loesen will dafuer dann die zweite Randbedingung in folgende umwandle u'(0)=S und S waehle und dann ein Anfangswertproblem loese und dann soll ich gucken, fuer welches S u(1) nahe 0 ist.

Bei mir wuerde dass dann wie folgt aus sehen, wenn ich es mit Eulers Method loesen wuerde:

y0'=y1                     [mm] y0_0=1 [/mm]              Schrittweite h sei 0.1
y1'=100y0               [mm] y1_0=S [/mm]

[mm] y0_1=1+h*(S) [/mm]
[mm] y1_1=100 [/mm]

2-ter Schritt:
[mm] y0_2=y0_1+h*(y1_1) [/mm]
... usw

Ich entschuldige mir hiermit in aller form fuer die mickrige Darstellung.
Bin fuer jede Hilfe Dankbar.
Gruss Toyo








        
Bezug
DGL: charakteristische Gleichung?
Status: (Antwort) fertig Status 
Datum: 11:19 Sa 22.10.2005
Autor: Loddar

Moin Toyo!


Warum löst Du diese Aufgaben nicht wie Deine andere mit der charakteristischen Gleichung. Das geht doch "ratz-fatz" :

[mm] $k^2 [/mm] - 100 \ = \ 0$     [mm] $\gdw$ $k_{1/2} [/mm] \ = \ [mm] \pm [/mm] 10$     [mm] $\Rightarrow$ [/mm]   $u \ = \ [mm] c_1*e^{10x} [/mm] + [mm] c_2*e^{-10x}$ [/mm]


Gruß
Loddar


Bezug
                
Bezug
DGL: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:46 Sa 22.10.2005
Autor: Stefan

Lieber Thorsten!

Ich nehme an, an diesem einfachen Beispiel soll das numerische Euler-Verfahren eingeübt werden und ganz bewusst nicht das direkte Lösungsverfahren. Auf jeden Fall ist das Vorgehen von Toyo grundsätzlich richtig, auch wenn ich es wirklich schwer lesen konnte...

Liebe Grüße
Stefan

Bezug
                        
Bezug
DGL: "Rechtfertigung" ;-)
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:51 Sa 22.10.2005
Autor: Loddar

Hallo Stefan!


Genau aus diesem Grunde hatte ich die Frage auch nur auf "teilweise beantwortet" eingestellt. ;-)

Ganz eindeutig war das nicht, da Toyo schrieb: "ich möchte ..." .


Gruß
Loddar


Bezug
                                
Bezug
DGL: Klar
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:01 Sa 22.10.2005
Autor: Stefan

Liebe Thorsten!

War auch nicht als Kritik gemeint :-), sondern ich wollte nur mutmaßen, warum diese DGL nicht direkt gelöst werden soll (wie es einfacher wäre), sondern numerisch.

Naja, jetzt hat er beides, schadet ja nicht. ;-)

Liebe Grüße
Stefan

Bezug
        
Bezug
DGL: Antwort
Status: (Antwort) fertig Status 
Datum: 11:50 Sa 22.10.2005
Autor: Stefan

Hallo!

Dein Vorgehen ist auf jeden Fall richtig. Du hast die DGL zweiter Ordnung korrekt in ein Lösungssystem erster Ordnung umgewandelt!

Statt dem Euler-Verfahren würde sich hier aber auch, wenn man es denn übungsweise numerisch lösen soll, die finite Differenzenmethode anbieten, dann kann man auch mit der zweiten Ableitung arbeiten und erhält ein LGS. Oder hattet ihr das noch nicht?

Liebe Grüße
Stefan

Bezug
        
Bezug
DGL: und hier ist ...
Status: (Antwort) fertig Status 
Datum: 12:14 Sa 22.10.2005
Autor: Karl_Pech

... noch ein Link. ;-)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de