www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Eigenwerte" - Diagonalisierung
Diagonalisierung < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Diagonalisierung: Matrix mit reellen Eigenwerten
Status: (Frage) beantwortet Status 
Datum: 21:44 Di 15.09.2009
Autor: stowoda

Aufgabe
Zeige, dass [mm] A=\pmat{ a & z \\ \overline{z} & b } [/mm] nur reelle Eigenwerte hat.

Ich habe keine Ahnung wie ich das beweisen sollte :(

        
Bezug
Diagonalisierung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:54 Di 15.09.2009
Autor: MathePower

Hallo stowoda,

> Zeige, dass [mm]A=\pmat{ a & z \\ \overline{z} & b }[/mm] nur reelle
> Eigenwerte hat.


Ich nehme an: [mm]a,b \in \IR, \ z \in \IC[/mm]


>  Ich habe keine Ahnung wie ich das beweisen sollte :(


Berechne hier das charakeristische Polynom.

Zeige dann, das dieses charakteristische Polynom
nur reelle Lösungen besitzt.


Gruss
MathePower

Bezug
                
Bezug
Diagonalisierung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:07 Di 15.09.2009
Autor: stowoda

Ist denn, z=a+jb oder ist z=c+jd ?

Bezug
                        
Bezug
Diagonalisierung: Antwort
Status: (Antwort) fertig Status 
Datum: 22:14 Di 15.09.2009
Autor: MathePower

Hallo stowoda,

> Ist denn, z=a+jb oder ist z=c+jd ?


Wie Du feststellen wirst, spielt das keine Rolle.

Nun, im Zweifelsfall ist [mm]z=c+j*d[/mm].


Gruss
MathePower

Bezug
                                
Bezug
Diagonalisierung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:22 Di 15.09.2009
Autor: stowoda

Ich bekomme ein reelles Polynom in [mm] \lambda [/mm] , da [mm] \overline{z}*z [/mm] reell ist.
Aber was nun? Oder war es das schon?

Bezug
                                        
Bezug
Diagonalisierung: Antwort
Status: (Antwort) fertig Status 
Datum: 22:25 Di 15.09.2009
Autor: MathePower

Hallo stowoda,

> Ich bekomme ein reelles Polynom in [mm]\lambda[/mm] , da
> [mm]\overline{z}*z[/mm] reell ist.
>  Aber was nun? Oder war es das schon?


Zeige jetzt, das dieses reeelle Polynom nur reelle Nullstellen hat.


Gruss
MathePower

Bezug
        
Bezug
Diagonalisierung: Antwort
Status: (Antwort) fertig Status 
Datum: 08:40 Mi 16.09.2009
Autor: fred97

Wenn  $ a,b [mm] \in \IR, [/mm] \ z [mm] \in \IC [/mm] $, so ist A hermitesch (selbstadjungiert)

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de