Fortsetzbar, total diffbare Fk < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) für Interessierte | Datum: | 21:20 Di 30.06.2009 | Autor: | Potus |
Aufgabe | Sei [mm] f:\IR^n \backslash \{0\} ->\IR [/mm] total differenzierbar, [mm] g:\IR^n ->\IR [/mm] stetig mit g(0)=0 und es gilt [mm] \parallel Df(x)\parallel\le [/mm] g(x) für alle [mm] x\in\IR^n \backslash \{0\}, [/mm] wobei Df(x) die Jacobi-Matrix von f in x ist.
ZZ: Es existiert eine funktion [mm] h:\IR^n ->\IR, [/mm] die total differenzierbar ist, mit h(x)=f(x) für alle [mm] x\in\IR^n \backslash \{0\}. [/mm] |
Leider hatten wir noch nicht den Mittelwertsatz (MWS) für [mm] \IR^n [/mm] ,also dürfen wir diesen nicht verwenden.
Leider komme ich bei dieser Aufgabe nicht über die Startlinie hinaus!
Was sagt mir z.B. die Bedingung [mm] \parallel Df(x)\parallel\le [/mm] g(x) für alle [mm] x\in\IR^n \backslash \{0\} [/mm] ?
Das einzige was ich mir bis jetzt gedacht habe ist, dass
[mm] h(x)=\begin{cases} f(x), & \mbox{fuer } x \not=0 \\ ???, & \mbox{fuer } x=0 \end{cases}
[/mm]
Dann müsste man differenzierbar nur für x=0 zeigen.
Aber wie bekomme ich raus, was "???" ist?
Danke.
Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:
http://www.matheplanet.com/matheplanet/nuke/html/viewtopic.php?topic=125305
|
|
|