www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Fourier-Transformation" - Herleitng Fourierkoeffizienten
Herleitng Fourierkoeffizienten < Fourier-Transformati < Transformationen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Fourier-Transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Herleitng Fourierkoeffizienten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:41 Mo 23.03.2009
Autor: leuchtturmwaerter

Guten Tag,
im Zuge meiner Facharbeit soll ich erklären, wie man auf die bekannten Berechnungen der Fourierkoeffizienten kommt.

[mm]a_k = \bruch{2}{T} \int_{0}^{T} f(t) cos (\omega t) \ dt[/mm]

Ich habe jetzt einfach mal versucht zu integrieren, also die Fourierkoeffizienten berechnet, mir springt aber leider jetzt nicht ins Auge, inwiefern man nun erkennen kann, woher diese Formel für die Koeffizienten kommt. Im Web und in verschiedenen Büchern habe ich leider nichts gefunden.
Kann mir hier jemand weiterhelfen und mir erklären, wie man die Fourierkoeffizienten herleitet? (Auch gerne mit der komplexen Schreibweise)
Danke schon mal im Voraus
leuchtturmwaerter

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Herleitng Fourierkoeffizienten: Antwort
Status: (Antwort) fertig Status 
Datum: 15:53 Mo 23.03.2009
Autor: fred97


> Guten Tag,
>  im Zuge meiner Facharbeit soll ich erklären, wie man auf
> die bekannten Berechnungen der Fourierkoeffizienten kommt.
>
> [mm]a_k = \bruch{2}{T} \int_{0}^{T} f(t) cos (\omega t) \ dt[/mm]

Das stimmt nicht ganz:

[mm]a_k = \bruch{2}{T} \int_{0}^{T} f(t) cos (\omega kt) \ dt[/mm]

[mm]b_k = \bruch{2}{T} \int_{0}^{T} f(t) sin (\omega kt) \ dt[/mm]




>  
> Ich habe jetzt einfach mal versucht zu integrieren, also
> die Fourierkoeffizienten berechnet, mir springt aber leider
> jetzt nicht ins Auge, inwiefern man nun erkennen kann,
> woher diese Formel für die Koeffizienten kommt. Im Web und
> in verschiedenen Büchern habe ich leider nichts gefunden.
>  Kann mir hier jemand weiterhelfen und mir erklären, wie
> man die Fourierkoeffizienten herleitet? (Auch gerne mit der
> komplexen Schreibweise)



Ich erklärs Dir mal für den Fall $T = 2 [mm] \pi$ [/mm]

Sei

[mm] \bruch{a_0}{2} +\summe_{n=1}^{\infty}(a_ncos(nx)+b_nsin(nx)) [/mm]

die Fourierreihe einer Funktion f und es gelte (was nicht immer der Fall ist)

       (*)   $f(x) [mm] =\bruch{a_0}{2} +\summe_{n=1}^{\infty}(a_ncos(nx)+b_nsin(nx))$ [/mm]  für jedes x  [mm] \in [/mm] [0,2 [mm] \pi] [/mm]

Wenn mann nun annimmt(was auch nicht immer der Fall ist), dass man in (*) Integration und Summation vertauschen darf, so ergibt sich aus den Orthogonalitätsrelationen( siehe http://www.mathepedia.de/Orthogonalitaetsrelationen.aspx) das Gesuchte.


FRED






>  Danke schon mal im Voraus
>  leuchtturmwaerter
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
        
Bezug
Herleitng Fourierkoeffizienten: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:11 Mo 23.03.2009
Autor: Marcel

Hallo,

> Guten Tag,
>  im Zuge meiner Facharbeit soll ich erklären, wie man auf
> die bekannten Berechnungen der Fourierkoeffizienten kommt.
>
> [mm]a_k = \bruch{2}{T} \int_{0}^{T} f(t) cos (\omega t) \ dt[/mm]
>  
> Ich habe jetzt einfach mal versucht zu integrieren, also
> die Fourierkoeffizienten berechnet, mir springt aber leider
> jetzt nicht ins Auge, inwiefern man nun erkennen kann,
> woher diese Formel für die Koeffizienten kommt. Im Web und
> in verschiedenen Büchern habe ich leider nichts gefunden.
>  Kann mir hier jemand weiterhelfen und mir erklären, wie
> man die Fourierkoeffizienten herleitet? (Auch gerne mit der
> komplexen Schreibweise)
>  Danke schon mal im Voraus
>  leuchtturmwaerter
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

ergänzend zu Fred:
Schau' Dir mal []diese Datei an (Seite 1 bis 7).

Fred hat ja schon erwähnt, dass man dabei ein Argument braucht, um die Vertauschung von Summation und Integration zu rechtfertigen. Beispielsweise wäre das machbar, wenn die Reihe $f(x) [mm] =\bruch{a_0}{2} +\summe_{n=1}^{\infty}(a_ncos(nx)+b_nsin(nx))$ [/mm] ($x [mm] \in [0,2\pi]$) [/mm] auf [mm] $[0,2\pi]$ [/mm] gleichmäßig konvergent wäre.

P.S.:
Siehe auch diese Diskussion bzw. diese Antwort [mm] ($\leftarrow$ klick it!). Gruß, Marcel [/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Fourier-Transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de