www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Untervektorraumbestimmung
Untervektorraumbestimmung < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Untervektorraumbestimmung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:56 Do 08.11.2007
Autor: JustAnotherStudent

Aufgabe
Sei [mm] Abb(\IR,\IR) [/mm] der [mm] \IR [/mm] Vektorraum der Abbildungen von [mm] \IR [/mm] nach [mm] \IR [/mm]

Ist die folgende Menge ein Untervektorraum von [mm] Abb(\IR,\IR)? [/mm]

-> U := {f [mm] \in Abb(\IR,\IR) [/mm] | f(1) = 0}

Hi!

Ich verstehe die Aufgabenstellung leider nicht, bzw.: Ich weiß was ein Vektor- und Untervektorraum ist, aber was bedeutet das f(1) = 1, und was ist überhaupt das "f" in der Aufgabe?

Vielen Dank für Eure Hilfe!!!!

(Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.)

        
Bezug
Untervektorraumbestimmung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:08 Do 08.11.2007
Autor: blascowitz

Guten Tag

Gegeben hast du den Vektorraum der Abbildungen von [mm] \IR \rightarrow \IR [/mm] .
Ein Untervektorraum ist eine Menge von Elementen aus dem Vektorraum, die selbst wieder einen Vektorraum bilden.
Um zu prüfen ob eine Menge ein Unterraum ist gibt es das Unterraum kriterium. Eine Menge muss drei Axiome erfüllen
1. 0 [mm] \in [/mm] M (was ist in diesem Vektorraum die Null?)
2  a [mm] \in [/mm] M, b [mm] \in [/mm] M [mm] \Rightarrow [/mm] a+b [mm] \in [/mm] M( ich kann zwei Elemente Addieren und  lande wieder im Unterraum(das heißt Abgeschlossenheit bzgl Addition))
3  a [mm] \in [/mm] M k [mm] \in [/mm] K [mm] \Rightarrow [/mm] k*a [mm] \in [/mm] M (Abgeschlossenheit bzgl skalarer Multiplikation)
Du musst jetzt diese Drei Axiome nachprüfen. Treffen sie zu ist die Menge ein Unterraum, wenn nicht dann nicht( ist eine genau dann wenn beziehung)
Die Angegebene Menge sind alle Polynome die bei 1 eine Nullstelle haben(z.B (x-1), [mm] (x^2-x)) [/mm] f ist dabei eine Abbildung von R nach R also ein Element des Vektorraumes.
Einen schönen Tach noch

Bezug
                
Bezug
Untervektorraumbestimmung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:05 Do 08.11.2007
Autor: JustAnotherStudent

Erst einmal Danke für deine Antwort!

Irgendwie bin ich jetzt immernoch ziemlich verwirrt. Wie zeige ich für dieses Beispiel, ob es sich um einen UVR handelt?

Danke!

Bezug
                        
Bezug
Untervektorraumbestimmung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:14 Do 08.11.2007
Autor: blascowitz

Also fangen wir mal an. Die Elemente dieses Vektorraumes sind Abbildungen. Jetzt haben wir eine Menge von Abbildungen gegeben die die Eins auf die Null abbilden. So jetzt müssen wir prüfen ob die Nullabbildung(die gibt es weil es ein Vektorraum ist) die Eins auf die Null abbildet. Das tut sie offensichtlich denn die NUllabbildung bildet jede reele Zahl (die werden abgebildet [mm] \IR \rightarrow \IR) [/mm] auf Null ab.
Nun die zweite Eigenschaft. Seien f und g [mm] \in [/mm] M. Dann ist (f+g)(1) = f(1)+g(1)= 0+0 =0' also ist auch f+g ein element aus M.
Die dritte Eigenschaft bekommst du jetzt bestimmt selber hin.
Noch einen schönen Tag

Bezug
                                
Bezug
Untervektorraumbestimmung: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 22:52 So 11.11.2007
Autor: Mirtschi

Hallo!

Ich habe etwas ähnliches zu zeigen. S sei Teilmenge der [mm] \IR^\IR [/mm]

[mm] S_1 [/mm] = {f/ f(1) = 1}
[mm] S_2 [/mm] = {f/ f(x) = f(-x) für jedes x [mm] \in\IR [/mm] }
[mm] S_3 [/mm] = {f/f(x) = -f(-x) für jedes x [mm] \in\IR [/mm] }

Ich soll zeigen, welche dieser Teilmengen Unterräume von [mm] \IR^\IR [/mm] sind.

Zu [mm] S_1 [/mm] habe ich mir überlegt, dass es kein Teilraum sein kann, da die Nullabbildung nicht jedes Element von [mm] \IR [/mm] auf 0 abbilden kann, da f(1) = 1 gilt. Ist das sinnvoll?

Für [mm] S_2 [/mm] und [mm] S_3 [/mm] habe ich ehrlich gesagt keine Idee. Ich weiß nur, dass [mm] S_2 [/mm] symmetrisch zur y-Achse und [mm] S_3 [/mm] symmetrisch zum Ursprung ist, das hilft mir aber nicht weiter.

Wäre toll, wenn mir jemand dabei helfen könnte!

Danke im Voraus!

Bezug
                                        
Bezug
Untervektorraumbestimmung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:01 Mo 12.11.2007
Autor: angela.h.b.

Hallo,

die Frage wird bereits dort diskutiert.

Weiteres ggf. bitte in der dortigen Diskussion.

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de