www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen
   Einstieg
   
   Index aller Artikel
   
   Hilfe / Dokumentation
   Richtlinien
   Textgestaltung
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Gerade
Mach mit! und verbessere/erweitere diesen Artikel!
Artikel • Seite bearbeiten • Versionen/Autoren

Gerade

Definition Gerade


  • Graph einer linearen Funktion
  • $ \IR^{2} $ oder $ \IR^{3} $: Menge von Punkten, die durch einen Punkt und einen Vektor (eine Richtung) beschrieben wird.

Schule

  • Gerade heißt der Graph einer linearen Funktion.

Sei $ f(x) = y = mx + b $ eine lineare Funktion. Diese Form der Geradengleichung im $ R^2 $ nennt man die Normalform.
Ihr Graph ist eine Gerade, die die Steigung $ m $ hat und die y-Achse bei $ y = b $, dem  Achsenabschnitt schneidet.

siehe auch: Geraden im $ R^2 $: Geradengleichung



  • Jede Gerade lässt sich durch eine Gleichung folgender Form beschreiben.

    $ g: \vec x = \vec a + r\cdot{} \vec u $

    Hierbei ist $ \vec a $ ein Stützvektor (Aufhängepunkt, Aufpunkt), $ \vec u $ ein Richtungsvektor und $ r \in \IR $ .

Für jede reelle Zahl $ r \in \IR $ erhält man einen Punkt P, der auf der Geraden liegt und umgekehrt: zu jedem Geradenpunkt gibt es ein $ r\in R $, das die Gleichung erfüllt.

Dabei spielt es keine Rolle, ob die angesprochenen Vektoren zwei- oder dreidimensional sind.
In der Regel benutzt man die Vektorgleichungen allerdings meistens für Geraden im Raum $ R^3 $.


  • Verläuft eine Gerade durch zwei Punkte A und B,
    so erhält man die Zwei-Punkte-Form der Geradengleichung:
    in Vektorform:

    $ \vec{x} = \vec{a} + r\cdot{}(\vec{b} - \vec{a}) $ mit $ r \in \IR $


    in Koordinatenform (nur im $ R^2 $):

    $ y=\frac{y_B-y_A}{x_B-x_A}(x-x_A)+y_B $

Bemerkung

Eine Gerade ist durch einen Punkt und eine Richtung eindeutig bestimmt.
Die Richtung kann auch durch zwei Punkte und deren Verbindungsvektor festgelegt sein.

Da die Geradengleichung den Parameter r enthält, nennt man diese auch Geradengleichung in Parameterform.



Universität


Erstellt: Di 05.10.2004 von informix
Letzte Änderung: So 25.03.2007 um 19:44 von informix
Artikel • Seite bearbeiten • Versionen/Autoren • Titel ändern • Artikel löschen • Quelltext

^ Seitenanfang ^
www.vorhilfe.de